检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:鲍伟威 纪凯迪 胡蜜蜜 娄吉芸 彭祺群 李震 王霞 阮银兰 杨世辉 BAO Weiwei;JI Kaidi;HU Mimi;LOU Jiyun;PENG Qiqun;LI Zhen;WANG Xia;RUAN Yinlan;YANG Shihui(State Key Laboratory of Biocatalysis and Enzyme Engineering,School of Life Sciences,Hubei University,Wuhan 430062,Hubei,China;School of Electronic Engineering and Automation,Guilin University of Electronic Technology,Guilin 541004,Guangxi,China;Subphotonics(Shenzhen)Biotech Co.,Ltd.,Shenzhen 518107,Guangdong,China;School of Optoelectronic Engineering,Guilin University of Electronic Technology,Guilin 541004,Guangxi,China)
机构地区:[1]湖北大学生命科学学院,省部共建生物催化与酶工程国家重点实验室,湖北武汉430062 [2]桂林电子科技大学电子工程和自动化学院,广西桂林541004 [3]亚波光子(深圳)科技有限公司,广东深圳518107 [4]桂林电子科技大学光电工程学院,广西桂林541004
出 处:《微生物学报》2022年第11期4262-4272,共11页Acta Microbiologica Sinica
基 金:国家重点研发计划(2021YFC2101101);国家自然科学基金(21978071,U1932141);浙江省引进培育领军型创新创业团队项目(2018R01014)。
摘 要:微生物发酵过程是细胞新陈代谢进行物质转化的过程,为了提高目标产物的转化率,需要对微生物发酵动态特性进行实时分析,以便实时优化发酵过程。拉曼光谱(Ramanspectroscopy)量化测试作为一种有应用前景的在线过程分析技术,可以在避免微生物污染的条件下,实现精准监测,进而用于优化控制微生物发酵过程。【目的】以运动发酵单胞菌(Zymomonas mobilis)为例,建立微生物发酵过程中葡萄糖、木糖、乙醇和乳酸浓度拉曼光谱预测模型,并进行准确性验证。【方法】采用浸入式在线拉曼探头,收集运动发酵单胞菌发酵过程中多个组分的拉曼光谱,采用偏最小二乘法对光谱信号进行预处理和多元数据分析,结合离线色谱分析数据,对拉曼光谱进行建模分析和浓度预测。【结果】针对运动发酵单胞菌,首先实现拉曼分析仪对单一产品乙醇发酵过程的精准检测,其次基于多元变量分析,建立葡萄糖、乙醇和乳酸浓度变化的预测模型,实现对发酵过程中各成分浓度变化的准确有效分析。【结论】成功建立了一种评价资源微生物尤其是工业菌株发酵液多种组分的拉曼光谱分析方法。该方法为运动发酵单胞菌等工业菌株利用多组分底物工业化生产不同产物的实时检测,以及其他微生物尤其工业菌株的选育和过程优化提供了新方法。Microbial fermentation is a process of substrate transformation by cell metabolism. In order to improve the yield of target products, we need to analyze the dynamic characteristics of microbial fermentation in a real-time manner so as to optimize the fermentation process. As a promising inline process analysis technology, Raman spectroscopy can achieve accurate monitoring under the in-situ conditions without causing microbial pollution and help optimize the microbial fermentation process. [Objective]To develop the prediction models with the inline Raman measurement technology and evaluate model performance so as to accurately monitor the concentration changes of glucose, xylose, ethanol, and lactic acid in the whole fermentation process of Zymomonas mobilis. [Methods]Raman spectra for multiple components in the fermentation process of Z. mobilis were collected in situ by the immersion probe, and then the partial least square method was adopted to conduct spectral processing and multivariate data analysis. The multivariate models were developed via the combination of Raman spectra with the HPLC data and then used to predict the concentrations of multiple components in the fermentation broth. [Results]The established models accurately measured the single products in the fermentation broth of Z. mobilis.Then, the prediction models for the concentrations of glucose, ethanol, and lactic acid were developed through multivariate analysis and validated, which can be used for real-time accurate determination of multiple components in the fermentation process. [Conclusion]We successfully established a Raman spectral analysis method for monitoring multiple chemicals in the fermentation broth. This is a promising technology for real-time monitoring of multiple substrates and products in industrial fermentation and can be used for strain development and process optimization of microorganisms.
关 键 词:运动发酵单胞菌 在线拉曼光谱分析技术 发酵过程控制
分 类 号:TQ920.1[轻工技术与工程—发酵工程] O657.37[理学—分析化学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49