检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:董建鑫[1] 王川[1] DONG Jianxin;WANG Chuan(Yanjing Medical College,Capital Medical University,Beijing101300)
出 处:《北京生物医学工程》2022年第6期564-568,582,共6页Beijing Biomedical Engineering
基 金:首都医科大学燕京医学院科研基金(18qdky09)资助。
摘 要:目的基于静息态功能磁共振图像,提取默认网络特征脑区的信号复杂度参数建立轻度认知障碍(mild cognitive impairment,MCI)的分类模型。方法研究数据来源于阿尔茨海默病神经成像数据库,包含48名健康人和53例MCI患者的数据。首先进行独立成份分析,针对分离出的独立成份分别计算对应时间序列的Hurst指数。然后在体素水平上采用双样本t检验选择左侧眶部额下回、左侧额上回和左侧额中回作为特征脑区,计算其Hurst指数作为分类特征。最后用支持向量机对MCI患者进行识别,并评价模型的准确率、灵敏度、特异度以及接收操作特征(receiver operating characteristics,ROC)曲线下面积。结果基于MCI和正常对照两组构建的分类模型,获得了最高88.71%的分类准确率、90.91%的灵敏度和86.21%的特异度,此外,ROC曲线的最大线下面积为0.96。结论Hurst指数可以反映MCI患者异常脑功能活动,基于独立成份分析和支持向量机的方法能有效地识别MCI患者,具有一定的临床辅助诊断意义。Objective Based on resting-state functional magnetic resonance images,signal complexity parameters of the default network characteristic brain regions were extracted to establish the classification model of mild cognitive impairment(MCI).Methods The data were from the Alzheimer’s Disease Neuroimaging Initiative(ADNI)database included 48 normal controls and 53 MCI patients.Firstly,the independent component analysis was carried out,and the Hurst exponents of corresponding time series were calculated for the separated independent components.Then,at the voxel level,two-sample t test was used to select the left orbital part of inferior frontal gyrus,left superior frontal gyrus and left middle frontal gyrus as characteristic brain regions,and their Hurst exponents were calculated as classification features.Finally,support vector machine was used to identify MCI patients,and the accuracy,sensitivity,specificity and area under receiver operating characteristics(ROC)curve of the model were evaluated.Results The classification model based on MCI and normal control group obtained the highest classification accuracy of 88.71%,sensitivity of 90.91%and specificity of 86.21%.In addition,the maximum area under ROC curve was 0.96.Conclusions Hurst exponent can reflect abnormal brain functional activities of MCI patients.Methods based on independent component analysis and support vector machine can effectively identify MCI patients,which has certain clinical diagnostic significance.
关 键 词:轻度认知障碍 静息态功能磁共振成像 HURST指数 独立成份分析 支持向量机
分 类 号:R318.04[医药卫生—生物医学工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7