检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蒋渊德 朱冰[2] 赵祥模[1] 赵健[2] 郑兵兵 Jiang Yuande;Zhu Bing;Zhao Xiangmo;Zhao Jian;Zheng Bingbing(School of Information Engineering,Chang’an University,Xi′an 710018;Jilin University,State Key Laboratory of Automotive Simulation and Control,Changchun 130025;AVIC Jonhon Optronic Technology Co.,Ltd.,Luoyang 471000)
机构地区:[1]长安大学信息工程学院,西安710018 [2]吉林大学,汽车仿真与控制国家重点实验室,长春130025 [3]中航光电科技股份有限公司,洛阳471000
出 处:《汽车工程》2022年第12期1825-1833,共9页Automotive Engineering
基 金:国家重点研发计划(2021YFB2501200);中央高校基本科研业务费项目(300102241102)资助。
摘 要:为满足自动驾驶汽车测试对场景真实度的要求,提出一种针对交通车辆交互关系的耦合特征建模方法。结合基于机理模型构建的虚拟数据和采集的真实场景数据建立交通车辆行为数据集;采用深度学习建立局部信息响应的交通车辆行为决策模型、跟驰模型和换道模型,结构相对简单的单体模型能提升场景模拟的可扩展性;针对自动驾驶汽车测试对模型鲁棒性要求高的问题,建立分布执行-集中对抗训练的架构进行交通车辆模型优化,提高模型对输入扰动的鲁棒性。构建交通车辆交互仿真环境对模型进行仿真,通过仿真数据与真实数据分布之间的对比和量化评价指标验证模型的有效性。In order to meet the requirements of autonomous vehicle testing on the realness of the test scenes,a coupled feature modeling method is proposed,aiming at the interaction relationship between traffic vehicles. The dataset of traffic vehicle behaviors is established by combining the virtual data built based on mechanism model and the real scene data. Deep learning is adopted to set up the behavior decision model,following model and lane change model of traffic vehicles with local information response. The single model with relatively simple structure can enhance the expandability of scene simulation. In view of the high requirements of autonomous vehicle testing on model robustness,a framework of distributed execution and centralized adversarial training is constructed to conduct traffic vehicle model optimization for enhancing its robustness to input disturbance. The simulation environment for traffic vehicle interaction is created with a simulation on the model performed,and the effectiveness of the model is verified by comparing simulation data distribution with real data one and quantifying evaluation indicators.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117