空间激光通信网络中虚假信息检测研究  被引量:2

Research on false information detection in space laser communication network

在线阅读下载全文

作  者:杨春霞 宋姗姗 许立莎 YANG Chunxia;SONG Shanshan;XU Lisha Yantai(Institute of Science and Technology,Yantai Shandong 265600,China)

机构地区:[1]烟台科技学院,山东烟台265600

出  处:《激光杂志》2022年第10期146-149,共4页Laser Journal

基  金:教育部产学合作协同育人项目(No.201901025026)。

摘  要:虚假信息会影响空间激光通信网络的性能,当前空间激光通信网络虚假信息检测方法存在许多不足,如检测错误率高,检测速度慢等,为了获得理想的虚假信息检测结果,设计了基于人工智能技术的空间通信网络虚假信息检测方法。首先采集空间激光通信网络信息的数据样本,并对数据样本进行预处理,生成了低维度、高质量的激光通信网络信息,然后采用人工智能设计空间激光通信网络信息检测模型,最后进行了空间激光通信网络信息检测实验。检测实验结果表明:本方法可以提高虚假信息的检测正确率,高达94%以上,空间激光通信网络信息检测时间大约为5 s,可以满足空间激光通信网络信息检测实时性要求。false information will affect the performance of space laser communication network. At present, there are many deficiencies in the false information detection method of space laser communication network, such as high detection error rate and slow detection speed. In order to obtain ideal false information detection results, a false information detection method system of space communication network based on artificial intelligence technology is designed. Firstly, the data samples of spatial laser communication network information are collected and preprocessed to generate low-dimensional and high-quality laser communication network information. Then, the spatial laser communication network information detection model is designed by artificial intelligence. Finally, the spatial laser communication network information detection experiment is carried out. The results show that this method can improve the detection accuracy of false information, which is more than 94%, at the same time, the information detection time of space laser communication network is about 5 s, which can meet the real-time requirements of information detection of space laser communication network.

关 键 词:空间激光 通信网络 虚假信息 检测方法 支持向量机 

分 类 号:TN929[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象