检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:程龙慧 任琼琼 肖培 张彬 朱艳侠 王胜 CHENG Long-hui;REN Qiong-qiong;XIAO Pei;ZHANG Bin;ZHU Yan-xia;WANG Sheng(Department of Healthcare-associated Infection Management;Department of Laboratory Medicine;Department of Scientific Research and Education,Anhui Province Maternity and Child Health Hospital,Hefei 230001,China)
机构地区:[1]安徽省妇幼保健院医院感染管理处,安徽合肥230001 [2]安徽省妇幼保健院检验科,安徽合肥230001 [3]安徽省妇幼保健院科教处,安徽合肥230001
出 处:《中国感染控制杂志》2022年第12期1164-1170,共7页Chinese Journal of Infection Control
基 金:安徽省社会科学创新发展研究课题(2021CX520);安徽省卫生健康软科学研究项目(2020WR03007);安徽省妇幼保健院院级科研课题(yb-2021-2-7)。
摘 要:目的通过对耐甲氧西林金黄色葡萄球菌(MRSA)、耐碳青霉烯类铜绿假单胞菌(CRPA)、耐碳青霉烯类鲍曼不动杆菌(CRAB)、耐第三代头孢菌素的大肠埃希菌(3GCR-E.coli)、耐第三代头孢菌素的肺炎克雷伯菌(3GCR-KP)等细菌耐药数据构建灰色预测模型,分析细菌耐药特征的变化趋势,探讨灰色预测模型在细菌耐药领域的应用价值。方法采用2014—2018年全国细菌耐药监测报告中MRSA、CRPA和CRAB、3GCR-E.coli、3GCR-KP等耐药率数据构建灰色预测GM(1,1)模型。用后验差比C值和小误差概率P值评估模型精度,用相对误差和级比偏差评估模型拟合效果,并用2019—2020年数据对模型预测效果进行验证。最终根据模型对2021—2023年的耐药率进行预测。结果本研究构建的GM(1,1)模型对MRSA、CRPA、CRAB、3GCR-E.coli和3GCR-KP等细菌耐药率预测效果较好,根据该模型预测到2023年其耐药率分别可降低至23.9%、15.2%、50.2%、43.8%、26.1%。结论全国针对细菌耐药情况采取的控制措施取得明显成效,GM(1,1)模型对细菌耐药率预测效果较好,可在细菌耐药管理领域推广应用。Objective To construct a grey prediction model based on bacterial drug resistance data of methicillin-resistant Staphylococcus aureus(MRSA),carbapenem-resistant Pseudomonas aeruginosa(CRPA),carbapenem-resistant Acinetobacter baumannii(CRAB),third-generation cephalosporin-resistant Escherichia coli(3GCR-E.coli),and third-generation cephalosporin-resistant Klebsiella pneumoniae(3GCR-KP),analyze the trends in bacterial drug resistance characteristics,and explore the application value of grey prediction model in the field of bacterial drug resistance.Methods A grey prediction model GM(1,1)was constructed based on drug resistance rate data of MRSA,CRPA,CRAB,3GCR-E.coli,and 3GCR-KP from the national bacterial drug resistance surveillance reports in 2014-2018.The precision of the model was assessed with posterior error ratio(C)and the small error probability(P).The fitting effectiveness of the model was evaluated with relative error and grade ratio deviation.The prediction effectiveness of the model was verified with the data from 2019 to 2020.Final prediction of drug resistance rates from 2021 to 2023 was made based on the constructed model.Results The GM(1,1)model constructed in this study has good prediction effectiveness on drug resistance rates of MRSA,CRPA,CRAB,3GCR-E.coli and 3GCR-KP.According to this model,resistance rates of the above bacteria were predicted to be reduced to 23.9%,15.2%,50.2%,43.8%,and 26.1%respectively by 2023.Conclusion The control measures taken against bacterial drug resistance in China have achieved remarkable results.GM(1,1)model is effective in predicting bacterial drug resistance rate and can be promoted for the application in the field of bacterial drug resistance management.
关 键 词:灰色系统 GM(1 1)模型 细菌耐药 抗生素耐药
分 类 号:R197.323.4[医药卫生—卫生事业管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7