检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王云艳[1,2] 王重阳 武华轩 杨智伟 WANG Yun-yan;WANG Chong-yang;WU Hua-xuan;YANG Zhi-wei(School of Electrical and Electronic Engineering,Hubei University of Technology,Wuhan Hubei 430068,China;Key Laboratory of Hubei Province for Efficient Use of Solar Energy and Energy Storage Operation Control,Wuhan Hubei 430068,China)
机构地区:[1]湖北工业大学电气与电子工程学院,湖北武汉430068 [2]太阳能高效利用及储能运行控制湖北省重点实验室,湖北武汉430068
出 处:《计算机仿真》2022年第10期148-152,158,共6页Computer Simulation
基 金:国家自然科学基金项目(41601394);湖北工业大学博士启动基金项目(BSQD2016010)。
摘 要:传统深度学习语义分割算法中存在特征细节信息丢失以及像素关联度降低的问题,导致图像边缘出现误分割、分割边界不连续。由此在复用底层特征以及捕获多尺度语义信息的基础上提出一种改进型DeepLabv3图像语义分割算法。依据底层特征有助于还原图像细节,构建轻量级并行卷积神经网络(CNN)处理残差网络浅层输出的特征图,获取更多图像空间信息;采用像素级特征融合将获取的图像空间信息与深层网络特征进行融合,并利用金字塔池化模块获取融合特征图的多尺度语义信息;然后利用双线性插值获取图像分割结果。实验结果表明,所提方法可以有效改善语义分割中出现的误分割、分割边界不连续的现象。Traditional deep learning semantic segmentation algorithms have the problems of loss of feature detail information and reduced pixel relevance, resulting in false segmentation of image edges and discontinuous segmentation boundaries. Therefore, an improved DeepLabv3 image semantic segmentation algorithm is proposed on the basis of reusing the underlying features and capturing multi-scale semantic information. According to the fact that the underlying features help restore the image details, a lightweight parallel convolutional neural network is constructed to process the feature map of the shallow output of the residual network to obtain more image spatial information. Pixel-level feature fusion is used to fuse the acquired image spatial information with deep network features, and the pyramid pooling module is used to obtain the multi-scale semantic information of the fused feature map, then the bilinear interpolation is used to obtain the image segmentation result. Experimental results show that the proposed method can effectively improve the phenomenon of false segmentation and discontinuity of segmentation boundaries in semantic segmentation.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7