应用时频图像纹理特征的行星齿轮故障诊断  被引量:4

Fault Diagnosis of Planetary Gear Used Time-Frequency Image Texture Features

在线阅读下载全文

作  者:崔宝珍[1,2] 王斌 任川 彭智慧 王浩楠 王泽兵[1] CUI Baozhen;WANG Bin;REN Chuan;PENG Zhihui;WANG Haonan;WANG Zebing(College of Mechanical Engineering,North University of China Taiyuan,030051,China;Key Laboratory of Advanced Manufacturing Technology of Shanxi Province,North University of China Taiyuan,030051,China;Jinxi Rail Rolling Stock Co.,Ltd.Taiyuan,030027,China)

机构地区:[1]中北大学机械工程学院,太原030051 [2]中北大学先进制造技术山西省重点实验室,太原030051 [3]晋西铁路车辆有限责任公司,太原030027

出  处:《振动.测试与诊断》2022年第6期1141-1146,1245,共7页Journal of Vibration,Measurement & Diagnosis

基  金:国家自然科学基金资助项目(51175480);山西省重点研发计划(国际合作)资助项目(201903D421008);中北大学先进制造技术山西省重点实验室开放基金资助项目(XJZZ202007)。

摘  要:行星齿轮箱结构复杂,当发生故障时其振动信号呈非线性非平稳特点且故障信号微弱,为了能够准确提取行星齿轮磨损故障信息的特征,提出局部均值分解(local mean decomposition,简称LMD)结合S变换(LMD-S)的信号处理方法,且转化为时频分布图像,应用时频图像纹理特征进行行星齿轮故障诊断。首先,把振动信号经由LMD-S变换处理后利用相关分析方法滤除干扰且转化为时频分布图像;其次,利用非均匀局部二值模式(local binary patterns,简称LBP)提取不同工况下采集数据的图像纹理特征;最后,采用极限学习机识别出3种故障类型,故障识别准确率达到90%,证明了此方法的有效性。The structure of the planetary gearbox is very complicated.When a fault occurs,its vibration signal ap⁃pears non-linear and non-stationary feature,and the fault signal is weak.In order to accurately extract features expressing planetary gear failure information,the signal processing method of local mean decomposition(LMD)combined with S-transform is proposed,and transform it into time-frequency distribution image.First,the vibration signal is processed by LMD-S transform,then the interference is filtered by correlation analysis method and transformed into time-frequency distributed image.Subsequently,the non-uniform local binary pat⁃tern(LBP)is used to extract image texture features under different working conditions.Finally,the limited learning machine is used to identify three fault types.The accuracy of fault recognition reaches 90%,which proves the effectiveness of this method.

关 键 词:行星齿轮 模式识别 故障诊断 局部均值分解-S变换 时频图像纹理特征 

分 类 号:TH132.425[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象