一种新的概率逼近遍历算法在雷达布站的应用  被引量:1

Application of New Probability Approximation Traversal Algorithm in Radar Station Distribution Setting

在线阅读下载全文

作  者:周红进[1] 兰国辉[1] 李伟[1] 王翔宇 ZHOU Hong-jin;LAN Guo-hui;LI Wei;WANG Xiang-yu(Department of Marine Navigation,PLA Dalian Naval Academy,Dalian 116018,China;Military Product Department,CSSC Dalian Shipbuilding Industry Co.,Ltd.,Dalian 116019,China)

机构地区:[1]海军大连舰艇学院航海系,辽宁大连116018 [2]大连船舶重工集团有限公司军工部,辽宁大连116019

出  处:《测控技术》2022年第12期53-57,65,共6页Measurement & Control Technology

基  金:国家自然科学基金资助项目(41574069)。

摘  要:针对基于测量到达时间差(TDOA)跟踪定位目标的无源雷达布站优化问题,根据TDOA定位原理,综合考虑目标空域、站址误差和时差测量误差,推导出衡量目标跟踪定位精度的几何精度因子(GDOP)计算公式,并将网格化后的GDOP加权均值作为评价函数。按照均匀概率随机产生站址组合样本,根据站址数量确定样本规模,遍历样本获得评价函数最小的站址组合。经过超算实际运行算例测试,最优雷达布站站址组合寻优成功率达到99.99995%,目标跟踪定位精度优于3 km。In order to solve the optimization problem of passive radar station distribution based on tracking and positioning target with time difference of arrival(TDOA),according to the TDOA positioning principle, considering the target airspace, station location error and time difference measurement error, the calculation formula of geometric dilution of precision(GDOP) to measure the target tracking and positioning accuracy is derived, and the gridded GDOP weighted mean value is used as the evaluation function.The station site combination samples are randomly generated according to the uniform probability, the sample size is determined according to the number of stations, and the station site combination with the smallest evaluation function is obtained by traversing the samples.Through the test of the actual operation example of super computer, the success rate of the optimization of the optimal radar station distribution site combination reaches 99.9995%,and the target tracking and positioning accuracy is better than 3 km.

关 键 词:无源雷达 布站 网格化 GDOP 加权均值 概率逼近 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构] TN957[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象