检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘明 张弘[2] LIU Ming;ZHANG Hong(School of Information Engineering,Zhengzhou University of Industry Technology,Zhengzhou Henan 450000,China;School of Electronic Technology,Information Engineering University,Zhengzhou Henan 450000,China)
机构地区:[1]郑州工业应用技术学院信息工程学院,河南郑州450000 [2]信息工程大学电子技术学院,河南郑州450000
出 处:《计算机仿真》2022年第11期467-471,共5页Computer Simulation
摘 要:交互终端界面可分为桌面、非桌面、可见及不可见几种类型,因此交互界面的大数据具有多样化和无序化特点,导致AI交互终端安全攻击事件时有发生。为增强AI交互安全性,提出AI交互终端大数据异常入侵风险识别方法。构建AI交互终端数据模型,获得入侵数据参变量在终端内簇首节点中的布局函数,构建异常数据入侵节点的路由拓扑模型。根据能量损耗测量频谱,得到交互终端数据布局全部簇的位置,拟合终端数据信息流二维信号。基于此,利用主成分分析提取异常值,筛选关联密切信息,保证成分互不干扰。根据排列数据簇,划分正常数据与异常入侵数据,利用网络发生器,得到入侵特征和权值,完成AI交互终端大数据异常入侵风险识别。实验结果显示,所提方法的AI交互终端大数据异常识别率可达95%以上,误检率低于10%,确保了AI终端的安全,可有效减小用户损失。Interactive terminals can be divided into desktop,non-desktop,visible and invisible interfaces.In order to enhance the security of AI interaction,a method of identifying invasion risks of abnormal big data in AI interaction terminals was proposed.Firstly,AI interactive terminal data model was constructed to obtain the layout function of intrusion data parameters of cluster head nodes within the terminal.Secondly,the routing topology model of abnormal data intrusion nodes was built.And then the positions of all clusters in the interactive terminal data layout were obtained by the spectrum measurement of energy loss.Moreover,the two-dimensional signals of terminal data flow were fitted.On this basis,principal component analysis was adopted to extract abnormal values and screen the information with close relations,thus ensuring that components did not interfere with each other.According to the arrangement of data clusters,abnormal intrusion data were separated from normal data.In the meanwhile,the network generator was used to find intrusion characteristics and weights.Finally,the abnormal intrusion risk identification of big data in AI interactive terminals was completed.Experimental results show that the recognition rate of abnormal data in AI interactive terminals can reach more than 95%,and the false detection rate is less than 10%,so this method ensures the safety of AI terminals and effectively reduces user losses.
关 键 词:交互终端 大数据异常入侵 入侵风险识别 数据特征提取 对角矩阵
分 类 号:TN925.1[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.35.52