检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈罗林 周煜松 徐胜舟[1] CHEN Luolin;ZHOU Yusong;XU Shengzhou(College of Computer Science&Hubei Provincial Engineering Research Center for Intelligent Management of Manufacturing Enterprises,South-Central Minzu University,Wuhan 430074,China)
机构地区:[1]中南民族大学计算机科学学院&湖北省制造企业智能管理工程技术研究中心,武汉430074
出 处:《中南民族大学学报(自然科学版)》2023年第1期111-119,共9页Journal of South-Central University for Nationalities:Natural Science Edition
基 金:湖北省自然科学基金资助项目(2020CFB541);中央高校基本科研业务费专项资金资助项目(CZY22015)。
摘 要:乳腺钼靶X线摄影是诊断乳腺疾病的有效手段,计算机辅助诊断系统在乳腺肿块检测中起着重要作用,针对检测过程中易出现漏检、误检导致精度不理想的情况,提出了一种改进的RetinaNet乳腺肿块检测算法.首先,在RetinaNet的基础上对特征提取部分进行改进,在每个残差块中引入多光谱通道注意力机制,使网络能更加关注到目标区域;然后,在特征融合部分,以两种不同方式添加一条自底向上的路径,并通过横向连接最终实现深浅层特征的双向融合,加快浅层信息流通,使得到的特征信息更加丰富.实验表明:改进后的算法在乳腺钼靶图像的肿块检测中具有良好的检测效果,既减少了漏检率,平均精度也提升了3.2%,并且相比其他出色的检测算法,也具有一定的优势.Mammography is an effective method for diagnosing breast diseases,and the computer aided diagnostic system plays an important role in the detection of breast masses.Because it is prone to the situation that missing and false detections lead to suboptimal accuracy,this paper proposes an improved RetinaNet algorithm for breast mass detection.Firstly,on the basis of RetinaNet algorithm,the part of the feature extraction is improved.The multi-spectral channel attention mechanism is introduced into each residual block,so that the network can pay more attention to the target area.Then in the part of feature fusion,a bottom-up path is added in two different ways,and the bidirectional fusion of deep and shallow features is finally achieved through horizontal connections.It can speed up the flow of shallow information and make the obtained feature information more abundant.Experiments show that the improved algorithm has a good detection capability in the mass detection of mammography images.It not only reduces the missing detection rate,but also improves the average precision by 3.2%.Compared with other excellent detection algorithms,it also has certain advantages.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117