检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:章倩丽 李秋生[1,2] ZHANG Qian-li;LI Qiu-sheng(Research Center of Intelligent Control Engineering Technology,Ganzhou,Jiangxi 341000,China;School of Physics and Electronic Information,Gannan Normal University,Ganzhou,Jiangxi 341000,China)
机构地区:[1]赣南师范大学智能控制工程技术研究中心,江西赣州341000 [2]赣南师范大学物理与电子信息学院,江西赣州341000
出 处:《井冈山大学学报(自然科学版)》2022年第6期64-70,共7页Journal of Jinggangshan University (Natural Science)
基 金:国家自然科学基金项目(42061027)。
摘 要:果实检测在研究脐橙采摘机械化发展中有着重要作用,然而不良天气条件将对目标果实的检测和识别产生不利影响。针对雾天和雨天情形下脐橙果实图像模糊、噪声复杂,检测速度较慢和准确率较低的问题,通过采用单阶段目标检测网络PP-YOLO来研究不良天气条件下赣南脐橙果实的识别。通过主干网络ResNet提取特征并结合FPN(特征金字塔网络)进行特征融合实现多尺度检测,且基本实现端到端检测。实验结果表明,所提出的PP-YOLO检测模型可实现雾天和雨天情况下赣南脐橙检测任务,mAP分别为89.06%和91.01%,识别效率分别可达到75.30 fps和75.44 fps,可以尝试在脐橙采摘机器人的研制中加以应用。Fruit detection plays an important role in studying the development of navel orange picking mechanization.However,adverse weather conditions will have an adverse impact on the detection and identification of target fruits.Aiming at the problems of blurry images,complex noise,slow detection speed and low accuracy rate of navel orange fruit under foggy and rainy days,this paper uses a single-stage target detection network PP-YOLO to study the identification of Gannan navel orange fruit under bad weather conditions.Feature extraction is achieved by the backbone network ResNet and feature fusion by combining FPN(feature pyramid network),and end-to-end detection is basically realized.The experimental results show that the proposed PP-YOLO detection model can realize the Gannan navel orange detection task under fog and rainy days,the mAP is 89.06%and 91.01%,and the recognition efficiency can reach 75.30 and 75.44fps,respectively,which can be tried to be applied in the development of navel orange picking robot.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.152.174