检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王丽朝 孟子尧 陈诗明[4] 许盛之 龚友康[1,2,3] 赵颖 Wang Lichao;Meng Ziyao;Chen Shiming;Xu Shengzhi;Gong Youkang;Zhao Ying(Institute of Photo-Electronics Thin Film Devices and Technology of College of Electronic Information and Optical Engineering of Nankai University,Tianjin 300350,China;Engineering Research Center of Thin Film Optoelectronics Technology,Ministry of Education,Tianjin 300350,China;Key Laboratory of Photoelectronics Thin Film Devices and Technology,Tianjin 300350,China;Big Data Management Center of Nankai University,Tianjin 300350,China)
机构地区:[1]南开大学电子信息与光学工程学院光电子薄膜器件与技术研究所,天津300350 [2]薄膜光电子技术教育部工程研究中心,天津300350 [3]天津市光电子薄膜器件与技术重点实验室,天津300350 [4]南开大学大数据管理中心,天津300350
出 处:《太阳能学报》2022年第11期78-84,共7页Acta Energiae Solaris Sinica
摘 要:光伏电站数据为时间序列数据,会受到通信传输、逆变器采集等因素的影响而包含大量异常数据,故该文研究一种基于深度学习的光伏电站数据预处理算法,进行数据清洗等预处理。一方面,根据组串逆变器的工作特性,对光伏电站数据的常见异常类型进行分析标记,结合滑动窗口法划分数据,构建用于深度学习训练的光伏电站数据集。另一方面,从激活函数、损失函数以及隐藏层等方面优化GRU神经网络模型,并利用自建数据集对该模型进行训练和测试。测试结果表明:该模型在实际光伏电站数据上的处理准确率达99.84%。Running data from the photovoltaic power system is time indexed,which may be incomplete caused by low quality communication, and always contain the amount of abnormal data from the inverter. This paper studies the algorithm to preprocess photovoltaic data before being used to evaluate the whole system performance. The preprocessing includes labeling abnormal data and cleaning noise data. One optimized GRU neural network is used to do that, which is trained on our lab-built dataset. The GRU network is optimized to process photovoltaic data more efficiently with the activation function, loss function, and hidden layer. The best accuracy is as good as 99.84% from the test dataset consisting of actual photovoltaic data which is not used in training.
分 类 号:TM615[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117