检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李海丰[1] 潘梦梦 王怀超[1] 李南莎 雒宇飞 桂仲成 LI Haifeng;PAN Mengmeng;WANG Huaichao;LI Nansha;LUO Yufei;GUI Zhongcheng(School of Computer Science and Technology,Civil Aviation University of China,Tianjin 300300,China;Chengdu Guimu Robot Co.Ltd,Chengdu 610310,China)
机构地区:[1]中国民航大学计算机科学与技术学院,天津300300 [2]成都圭目机器人有限公司,四川成都610310
出 处:《郑州大学学报(理学版)》2023年第1期64-70,共7页Journal of Zhengzhou University:Natural Science Edition
基 金:国家重点研发计划课题(2019YFB1310601);中央高校基本业务费项目(3122019120)。
摘 要:及时准确地检测机场跑道地下病害对保障飞行安全至关重要,由于机场道面结构层复杂,其电磁波传播环境复杂、噪声强度大,致使地下病害的探地雷达数据特征被严重干扰。为此,提出了一种基于尺度融合的机场跑道地下病害检测算法SF-SSD。首先,在VGG16主干网络上设计具有更宽感受野的RFB模块,抑制了病害周围的噪声干扰,提取更多原始雷达数据特征;然后,使用尺度融合的方式融合网络浅层特征,获取不同类型病害间的细微差异,形成高辨识度的病害细节纹理特征;最后,根据6种不同分辨率的特征图生成6种尺度先验框进行类别预测和位置回归,通过非极大值抑制的方式筛除冗余的先验框。在真实机场跑道地下病害数据集上进行了测试,并与目前5种经典目标检测算法进行对比。实验结果表明,SF-SSD算法可以较好地从辨识度低、噪声强度大的雷达数据中完成病害自动检测,并取得了最高的平均准确率,达到了82.18%。Timely and accurate detection of airport runway subsurface diseases is crucial to ensure flight safety. Due to the complex structure layer of airport road surface, the complicated electromagnetic wave propagation environment and the high noise intensity, the ground-penetrating radar would be seriously disturbed. A scale fusion-based airport runway subsurface disease detection algorithm SF-SSD was proposed. Firstly, the RFB module with wider perceptual field was designed on the VGG16 backbone network, which suppressed the noise interference around the disease and extracted more features from the original radar data. Then, the shallow features of the network were fused using scale fusion to obtain the subtle differences between different types of disease and form highly discriminative detailed texture features of the disease. Finally, six scaled prior frames were generated for category prediction and location regression, and the redundant prior frames were screened out by non-maximal value suppression. It was tested on real airport runway subsurface disease dataset, and compared with five current classical target detection algorithms. The experimental results showed that the SF-SSD algorithm could accomplish automatic disease detection better from radar data with low discrimination and high noise intensity, and achieved the highest average accuracy of 82.18%.
关 键 词:尺度融合 卷积神经网络 探地雷达 地下病害检测 机场跑道
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62