检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘磊[1] LIU Lei(Research Department,Sichuan Vocational College of Business,Chengdu 611131,China)
出 处:《成都工业学院学报》2023年第1期52-57,共6页Journal of Chengdu Technological University
摘 要:为了提高指纹技术在无线网络中的安全性,提出一种适用于无线网络的无监督学习指纹识别技术。首先,介绍了无线特征的综合分类系统。以特征生成所需的主动和被动协议栈层,以及这些特征作用的粒度为基础将特征进行分类。然后,系统地回顾了指纹识别算法,包括监督学习和非监督学习方法,并提出一种无监督学习方法。同时,找出设备指纹和特征提取在应用到无线安全领域中时可能出现的问题。所提方法的整体识别率优于对比方法,能提高6.65%的识别率,渐变指纹识别率达到100%。对女巫攻击和伪装攻击的检测率更高。In order to improve the security of fingerprint technology in wireless networks, an unsupervised learning fingerprint identification technology for wireless networks was proposed. Firstly, the comprehensive classification system of wireless features was introduced. The features wer classified based on the active and passive protocol stack layers required for feature generationas well as the granularity of these features. Then, fingerprint identification algorithms was systematically reviewed, including supervised learning and unsupervised learning methods, and an unsupervised learning method was proposed. At the same time, the possible problems that may occur when the device fingerprint and feature extraction are applied in the wireless security field were found out. The overall recognition rate of the proposed method is better than that of the comparison method, which can improve the recognition rate by 6.65%, and the gradual fingerprint recognition rate reaches 100%, and the detection rate of witch attack and camouflage attack is higher.
关 键 词:指纹识别技术 网络安全 移动设备 无线网络 特征提取
分 类 号:TN924.1[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147