检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑扬飞 张青龙[1] Yangfei Zheng;Qinglong Zhang(School of Management,University of Shanghai for Science and Technology,Shanghai,200093,China)
出 处:《管理科学与研究(中英文版)》2022年第9期121-127,共7页Management Science and Research
摘 要:本文选取了深度学习算法中对时间序列预测表现良好的长短期记忆模型(Long Short Term Memory,LSTM)与GARCH模型相结合,对2017年1月至2021年12月美元兑人民币和欧元兑人民币汇率进行预测,以融合新型的深度学习模型和传统的金融时间序列预测模型各自优势来提高人民币汇率预测的准确性。经实证发现,GARCH模型、LSTM模型、GARCH和LSTM的混合模型预测的准确性依次提高,混合模型能较好地提升预测能力。In this paper,the Long Short Term Memory model with good performance in time series prediction in deep learning algorithm was selected to combine with GARCH model to predict the exchange rate of USD/RMB and EUR/RMB from January 2017 to December 2021.The accuracy of RMB exchange rate prediction is improved by combining the advantages of the new deep learning model and the traditional financial time series forecasting model.Empirical results show that the prediction accuracy of GARCH model,LSTM model,and mixed model of GARCH and LSTM are improved successively,and the mixed model can better improve the prediction ability.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7