基于深度网络的汽车配件两级备件决策  被引量:4

Two-level spare parts decision for auto parts based on deep network

在线阅读下载全文

作  者:张明蓝 孙林夫[1,2] 邹益胜 ZHANG Minglan;SUN Linfu;ZOU Yisheng(School of Computing and Artificial Intelligence,Southwest Jiaotong University,Chengdu 610031,China;Manufacturing Industry Chains Collaboration and Information Support Technology Key Laboratory of Sichuan Province,Chengdu 610031,China)

机构地区:[1]西南交通大学计算机与人工智能学院,四川成都610031 [2]四川省制造业产业链协同与信息化支撑技术重点实验室,四川成都610031

出  处:《计算机集成制造系统》2022年第12期3822-3831,共10页Computer Integrated Manufacturing Systems

基  金:国家重点研发计划资助项目(2020YFB1711802);四川省科技计划资助项目(2021YFG0040)。

摘  要:备件业务是汽车配件售后市场重要组成部分,针对汽车备件决策过程中信息不完备与多样性的问题,提出一种正则化VIT-BiLSTM两级备件决策模型。首先,根据配件类型对数据进行两级划分,以获取其内在联系。然后,利用Vision Transformer(VIT)模型对配件数据进行关键特征的提取。随后,通过双向长短时记忆循环神经网络(BiLSTM)捕捉特征之间的双向长时依赖关系,并在每个序列单元中融入组套索正则化项,进一步提高模型准确率。最后,利用第三方云平台的配件数据进行算例分析。实验结果表明,模型一级与二级的决策准确率分别高达99%、97%,召回率分别为97.3%、96.6%,F值分别为0.977、0.964,说明本模型可以为配件代理商提供实时数据参考,辅助其进行备件决策。Spare parts business is an important part of the auto parts aftermarket.Aiming at the problems of incomplete information and diversity in the decision-making process of automobile spare parts,a regularized VIT-BiLSTM two-level spare parts decision-making model was proposed.The data was divided into two levels according to the type of auto parts to obtain its inner connection.Then,the Vision Transformer(VIT)model was used to extract key features from the accessory data.The bidirectional long-term dependencies between features were captured by the Bidirectional Long Short Term Memory(BiLSTM)recurrent neural network.Meanwhile,the group lasso regularization term was incorporated into each sequence unit of BiLSTM to further improve the accuracy of the model.The accessory data of the third-party cloud platform was applied to conduct an example analysis.The experimental results showed that the decision-making accuracy rates of the first-level and second-level models were as high as 99%and 97%respectively,the recall rates were 97.3%and 96.6%respectively,and F values were 0.977 and 0.964 respectively.It showed that the proposed model could provide real-time data reference for spare parts dealers to assist them in making spare parts decisions.

关 键 词:汽车配件 深度网络 两级备件决策 VIT模型 BiLSTM模型 组套索正则化 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象