基于卷积神经网络的微带滤波器结构参数估计  被引量:1

Structure parameter estimation of microstrip filter based on convolutional neural network

在线阅读下载全文

作  者:张友俊[1] 程顺延 You-jun ZHANG;Shun-yan CHENG(School of Information Engineering,Shanghai Maritime University,Shanghai 201306,China)

机构地区:[1]上海海事大学信息工程学院,上海201306

出  处:《吉林大学学报(工学版)》2022年第12期3022-3028,共7页Journal of Jilin University:Engineering and Technology Edition

基  金:国家自然科学基金项目(61775196).

摘  要:针对神经网络微波建模耗时难的问题,提出了一种基于卷积神经网络的微带滤波器结构参数估计方法。采用单开路短截线加载矩形环谐振器和横向信号干扰技术分析和设计了一款双频带、三频带和四频带的微带滤波器,并利用电磁仿真软件提取数据。将微带滤波器的S参数和结构参数分别作为模型的输入和输出进行训练,并通过训练好的模型进行结构参数预测。利用卷积神经网络设计微带滤波器的方法,能够有效解决目前基于神经网络设计微带滤波器时输入参数较多、全连接造成模型复杂以及耗时长等问题。仿真结果表明,该方法设计的微带滤波器S参数有较高的准确率。Aiming at the issue of microwave modeling based on neural network,a structure parameter estimation method for microstrip bandpass filter based on convolution neural network is proposed.A dual band,three band and four band microstrip filter was designed and analyzed by adopting single open stub loaded rectangular ring resonator and transverse signal interference technology.Applying electromagnetic simulation software extracted the model training data and the S-parameters and structure parameters of microstrip filter are designed as the input and output of the proposed convolution neural network,respectively.Furthermore,the trained model was used to predict the structure parameters of microstrip filter.The proposed method adopts convolutional neural network to design the microstrip filter,which can effectively solve the problems of many input parameters,complex model caused by full connection and long time-consuming when using neural network to design microstrip filter.The simulation results show that the S-parameters of the microstrip filter designed by this method have high accuracy.

关 键 词:电磁学 环形谐振器 带通滤波器 卷积神经网络 结构参数估计 

分 类 号:TN713[电子电信—电路与系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象