基于粒子群优化-支持向量机的睡眠呼吸暂停检测  被引量:4

Sleep Apnea Detection Based on Particle Swarm Optimization-Support Vector Machine

在线阅读下载全文

作  者:张大可 马隽[2,3] 王立英 王钢[1] 蔡靖 孙玉冰[4] ZHANG Da-ke;MA Juan;WANG Li-ying;WANG Gang;CAI Jing;SUN Yu-bing(School of Electrical and Information Engineering,Beihua University,Jilin 132021,China;School of Basic Medical Sciences,Beihua University,Jilin 132021,China;Weeping Willows Hospital Affiliated to Tsinghua University,Beijing 100020,China;College of Instrumentation and Electrical Engineering,Jilin University,Changchun 130061,China)

机构地区:[1]北华大学电气与信息工程学院,吉林132021 [2]北华大学基础医学院,吉林132021 [3]清华大学附属垂杨柳医院,北京100020 [4]吉林大学仪器科学与电气工程学院,长春130061

出  处:《科学技术与工程》2022年第33期14644-14651,共8页Science Technology and Engineering

基  金:吉林省科技厅科研项目(20190303038SF,20200404154YY);吉林省教育厅科研项目(JJKH20210044KJ,JJKH20200045KJ);吉林市科技局科技项目(20190302018)。

摘  要:睡眠呼吸暂停(sleep apnea,SA)是一种睡眠障碍疾病,严重影响睡眠质量和身体健康。为降低睡眠呼吸障碍检测的复杂度并提高准确率,提出了一种粒子群优化-支持向量机(particle swarm optimization-support vector machine,PSO-SVM)方法,通过心电信号实现对SA的准确检测。首先,将心电信号分段,并从中提取心率变异性;其次,实现特征提取与选择,包含心电信号RR间期的均值、标准差、均值标准差、差值均方的平方、心率变异性的信号总功率、低频段功率、高频段功率、瞬时中位频率、边际谱熵和能量谱熵等;最后,通过PSO-SVM分类算法进行睡眠呼吸暂停检测。结果表明,筛选10个特征对SA进行检测,利用Apnea-ECG数据库通过PSO-SVM的检测准确率为94.0%,提升了现有方法的检测性能。Sleep apnea(SA)is a sleep disorder disease,which seriously affects sleep quality and health.In order to reduce the complexity and improve the accuracy of sleep apnea detection,a particle swarm support vector machine(PSO-SVM)method was proposed to accurately detect SA through ECG.Firstly,the ECG signal was segmented and the heart rate variability was extracted from it.Secondly,feature extraction and selection were realized,including the mean,standard deviation,mean standard deviation,square of mean square of difference,total signal power of heart rate variability,low-frequency power,high-frequency power,instantaneous median frequency,marginal spectral entropy and energy spectral entropy of ECG RR interval.Finally,sleep apnea was detected by the PSO-SVM.The results show that this method selects 10 features to detect SA,and the detection accuracy through PSO-SVM using Apnea-ECG database is 94.0%,which improves the detection performance of the existing methods.

关 键 词:睡眠呼吸暂停 心电信号 粒子群优化 支持向量机 

分 类 号:R318[医药卫生—生物医学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象