检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:石玉诚 吴云[1] 龙慧云[1] SHI Yucheng;WU Yun;LONG Huiyun(School of Computer Science and Technology,Guizhou University,Guiyang 550025,China)
机构地区:[1]贵州大学计算机科学与技术学院,贵阳550025
出 处:《计算机科学与探索》2023年第1期140-153,共14页Journal of Frontiers of Computer Science and Technology
基 金:国家自然科学基金(61741124);贵州省科技计划项目(黔科合平台人才[2018]5781号)。
摘 要:针对显著区域定位不完整以及边缘模糊问题,提出一种RGB-D显著性目标检测方法。该方法首先设计了一个跨模态特征融合模块来逐层融合RGB和Depth信息,并得到六个模态融合特征输出。该模块降低了RGB和Depth信息之间存在的差异性,为后续的高级语义修复提供更具共性和互补性的深层特征;基于上述模块获得的多层次信息,利用后三层特征,联合提取更丰富的高级语义信息,并得到初始显著图。之后,采用UNet的网络结构,从网络的顶层向下融合,每一层经过上采样之后与下一层进行通道维度上的融合,前三层底层特征在融合前后采用高级语义特征进行指导,以完成对底层特征的修复。最后,得到最终的显著图。提出的跨模态特征融合模块能够自适应地融合多模态特征,突出融合特征的共性和互补性,降低融合的模糊度。提出的高级语义修复策略有助于准确检测出显著区域并提高边缘清晰度。实验结果表明,该算法在NJU2K、NLPR、STERE、DES、SIP五个数据集上均超过大部分优秀的方法,达到了较为先进的性能。Aiming at the problem of incomplete location and fuzzy edge of salient region, this paper proposes a method of RGB-D salient target detection. Firstly, a cross-modal feature fusion module is designed to integrate RGB and depth information layer by layer. Six modal fusion feature outputs are obtained. This module reduces the discrepancy between RGB and depth information, providing more common and complementary deep features for the subsequent advanced semantic repair. Multiple levels of information is obtained based on the above modules.This paper uses the last three layer features to jointly extract richer high-level semantic information, and the initial salient map is obtained. After that, the network structure of U-Net is used to fuse from top to the bottom of the network. After upsampling, each layer is fused with the next layer in channel dimension. The first three layers of bottom features are guided by advanced semantic features before and after fusion, to complete the repair of the lowlevel features. Finally, the final salient map is obtained. The proposed cross-modal feature fusion module can adaptively fuse multi-modal features, highlight the commonness and complementarity of fusion features, and reduce the ambiguity of fusion. The proposed advanced semantic repair strategy is helpful to accurately detect the salient region and improve the edge clarity. Experimental results show that the proposed algorithm outperforms most excellent methods on five datasets, including NJU2K, NLPR, STERE, DES and SIP, which achieves relatively advanced performance.
关 键 词:RGB-D 显著性目标检测 跨模态融合 高级语义修复
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.66.142