检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Bingchen Liu Li Jiang Shaowei Fan
机构地区:[1]State Key Laboratory of Robotics and System,Harbin Institute of Technology,Harbin 150080,China
出 处:《Journal of Bionic Engineering》2022年第4期935-952,共18页仿生工程学报(英文版)
基 金:supported in part by the China National Key Research and Development Program under Grant no.2020YFC2007801;in part by the National Natural Science Foundation of China under Grant no.U1813209.
摘 要:Mapping grasps from human to anthropomorphic robotic hands is an open issue in research,because the master hand and the slave hand have dissimilar kinematics.This paper proposes a hybrid mapping method to solve this problem.In the proposed method,fingers in the master and the slave hands are divided into vital and synergic fingers according to their contribution to the grasping task.The tip of the vital finger of the master hand is first mapped to that of the slave hand while ensuring that both are in simultaneous contact with the object to be grasped.Following postural synergy theory,joints of the other synergic fingers of the slave hand are then used to generate an anthropomorphic grasping configuration according to the shape of the object to be grasped.Following this,a human-guided impedance controller is used to reduce the pre-grasping error and realize compliant interaction with the environment.The proposed hybrid mapping method can not only generate the posture of the humanoid envelope but can also carry out impedance-adaptive matching.It was evaluated using simulations and an experiment involving an anthropomorphic robotic slave hand.
关 键 词:Robotic hand Human-in-the-loop GRASPING Postural synergy Impedance control
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7