利用土壤地球化学数据和BP神经网络预测松嫩平原油气资源  被引量:2

PREDICTION OF OIL-GAS RESOURCES IN SONGNEN PLAIN BASED ON SOIL GEOCHEMICAL DATA AND BACK-PROPAGATION NEURAL NETWORK

在线阅读下载全文

作  者:刘凯[1,2] 朱建新 戴慧敏[1,2] 刘国栋 许江 宋运红[1,2] 杜守营 LIU Kai;ZHU Jian-xin;DAI Hui-min;LIU Guo-dong;XU Jiang;SONG Yun-hong;DU Shou-ying(Shenyang Center of China Geological Survey,Shenyang 110034,China;Key Laboratory of Black Land Evolution and Ecological Effects,CGS,Shenyang 110034,China;Geophysical Measuring Exploration Institute of Liaoning Province,Shenyang 110031,China;Shenyang Pengde Environmental Technology Co.,Ltd.,Shenyang 110034,China)

机构地区:[1]中国地质调查局沈阳地质调查中心,辽宁沈阳110034 [2]中国地质调查局黑土地演化与生态效应重点实验室,辽宁沈阳110034 [3]辽宁省物测勘查院有限责任公司,辽宁沈阳110031 [4]沈阳市鹏德环境科技有限公司,辽宁沈阳110034

出  处:《地质与资源》2022年第6期784-789,836,共7页Geology and Resources

基  金:国际地学对比计划项目“全球黑土地关键带演化机制及可持续利用”(IGCP665);中国地质调查局地质调查项目“兴凯湖平原及松辽平原西部土地质量地球化学调查”(DD20190520).

摘  要:基于东北地区多目标区域地球化学调查获得的海量土壤地球化学数据,利用BP神经网络模型,在土壤地球化学性质与油气田空间位置之间建立模型,构造最优的油气资源预测模型.以土壤54项地球化学指标以及XY坐标值共同作为模型输入层,以样本是否在油气田内(1代表油气田内,0代表油气田外)作为模型输出层,基于随机抽取的油气田内和油气田外各500个土壤样本数据进行模型训练.结果显示,多次训练后识别准确率保持在90%左右,说明该模型分类效果较好,可用于油气资源预测.利用该模型获得了松嫩平原11291个土壤样本的含油气概率,并绘制了油气资源预测图.研究表明,神经网络对于解决复杂的非线性地质问题可以发挥重要作用.Based on the massive data obtained from the multi-target regional geochemical survey in Northeast China,the back-propagation(BP)neural network is used to establish the model between soil geochemical property and spatial location of oil-gas fields,and construct the optimal prediction model of oil-gas resources.Taking both the 54 soil geochemical indexes and XY coordinate values as input layer of the model and whether the samples are inside the oil-gas fields(1 for inside,0 for outside)as output layer,the study carries out the model training based on the data of each 500 soil samples randomly selected from inside and outside the oil-gas fields.The results show that the recognition accuracy remains at about 90%after repeated training,indicating that the model has good classification effect and can be used for prediction of oil-gas resources.The hydrocarbon-bearing probability of 11291 soil samples from Songnen Plain is obtained by using the model,and then the prediction map of oil-gas resources is drawn.The study shows that neural network can play an important role in solving complex nonlinear geological problems.

关 键 词:神经网络 预测模型 土壤地球化学 油气资源 大数据 松嫩平原 

分 类 号:P596[天文地球—地球化学] P628[天文地球—地质学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象