检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄恒秋[1] 翁世洲[2] Huang Hengqiu;Weng Shizhou(School of Mathematics,Physics and Electronic Information Engineering,Guangxi Normal University for Nationalities,Chongzuo 532200;School of Economic management,Guangxi Normal University for Nationalities,Chongzuo 532200)
机构地区:[1]广西民族师范学院数理与电子信息工程学院,崇左532200 [2]广西民族师范学院经济管理学院,崇左532200
出 处:《现代计算机》2022年第21期18-25,共8页Modern Computer
基 金:广西高校中青年教师科研基础能力提升项目(2020KY20012):混合型不完备数据的邻域粗糙集分类方法;广西高校中青年教师科研基础能力提升项目:概率数及其在不确定决策理论中的应用研究;广西民族师范学院校级科研项目(2020YB007):模糊区间粗糙数信息系统下的多属性决策方法及应用研究。
摘 要:针对混合不完备数据集,提出一种基于邻域联系度距离拓展高斯核函数的支持向量机分类方法。首先,给出了基于邻域联系度距离拓展高斯核函数的定义;其次,给出基于二次函数逼近的支持向量机SMO训练算法和分类算法;最后,取多个UCI数据集进行了实验分析,通过与填充支持向量机、混合距离支持向量机和风险重构支持向量机分类方法进行比较,结果表明提出的分类方法在不对缺失值作任何处理、不改变支持向量机模型结构与约束条件的情况下,仍然获得了优异的分类效果。In order to process incomplete data set with hybrid value,a novel classification method based on Expand Gaussian kernel-Support vector machine is proposed.Firstly,based on the connection degree distance function for Expand Gaussian kernel is defined;Secondly,the SMO training algorithm base on quadratic function approximation for support vector machine and classifi⁃cation algorithm are provided.Finally,some experiments are carried out on UCI data sets,and compare to the filling support vector machine,the risk reconstruction support vector machine and the HEOM support vector machine,the experiments show that the ex⁃cellent classification results of proposed classification method which is no need to handle missing values and no need to change SVM model structure and constraints are still obtained.
关 键 词:混合不完备数据 联系度距离 联系度距离高斯核 支持向量机
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46