检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐盈 蓝雯飞[1] 田鹏 Xu Ying;Lan Wenfei;Tian Peng(School of Computer Science,South-Central Minzu University,Wuhan 430074)
机构地区:[1]中南民族大学计算机科学学院,武汉430074
出 处:《现代计算机》2022年第21期26-32,共7页Modern Computer
摘 要:当前物流业中,对于配送人员的薪酬计算大都基于配送距离和物品重量等因素,其缺乏对配送人员具体活动类型及能量消耗的考虑,难以对薪酬进行高效合理分配。基于此,在数据层面,通过与某大型物流公司合作,为25名配送人员穿戴相应设备,采集其在配送过程中的加速度计和陀螺仪等真实数据。算法层面,提出了一种基于多任务双向长短时记忆(BiLSTM)的深度网络结构,通过大量实验表明,BiL⁃STM模型在活动识别和能量消耗分级上的分类准确率分别达到92.8%和94.2%,结果皆优于基准多任务LSTM算法和其他代表性学习算法。In the current logistics industry,the salary calculation for delivery personnel is mostly based on factors such as de⁃livery distance and weight of items,which lacks consideration of specific activity types and energy consumption of delivery person⁃nel,making it difficult to allocate salary efficiently and reasonably.Based on this,in this paper,we cooperate with a large logistics company to collect real data such as accelerometer and gyroscope from 25 delivery personnel who wear wearable devices during the delivery process.At the algorithm level,a deep network structure based on multitask bidirectional long short-term memory(BiL⁃STM)is proposed.Extensive experiments show that the BiLSTM model achieves 92.8%and 94.2%classification accuracy for activ⁃ity recognition and energy consumption classification,outperforming both the benchmark multitask LSTM algorithm and other rep⁃resentative learning algorithms.
关 键 词:人类活动识别 能量消耗 可穿戴设备 多任务 双向长短期记忆网络
分 类 号:F252[经济管理—国民经济] TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229