检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:田俊鹏 李晓戈 马鲜艳[1] TIAN Jun-peng;LI Xiao-ge;MA Xian-yan(College of Computer,Xi′an University of Posts and Telecommunications,Xi′an 710000,China;Shannxi Provincial Key Laboratory of Network Data Analysis and Intelligent Processing,Xi′an University of Posts and Telecommunications,Xi′an 710000,China)
机构地区:[1]西安邮电大学计算机学院,西安710000 [2]西安邮电大学陕西省网络数据分析与智能处理重点实验室,西安710000
出 处:《小型微型计算机系统》2023年第1期8-13,共6页Journal of Chinese Computer Systems
基 金:国家重点研发计划项目(2018YFB1402905)资助;陕西省重点研发计划项目(2020GY-227)资助.
摘 要:为满足企业的技术服务及研发需求,各地陆续建设线上供需服务平台.线上技术供需匹配难的主要原因在于文本相似度计算的准确性以及多元数据对于成交结果的影响.为解决上述问题,本文提出一种融合多属性的供需推荐模型,针对“陕西省中小企业研发服务平台”数据进行供需推荐,其中包括论文、专利、成果、项目等多属性特征,采用基于Bert(Bidirectional Encoder Representation from Transformers)的句向量表示方法计算供需文本的相似得分,并结合熵值法确定各属性权重,对各属性数据得分加权变换后实现推荐.实验表明,所提出的相似度计算模型在真实数据集上,各项评价指标优于词向量的表示方法.结合权值矩阵的多属性推荐模型,可较好的实现企业科技研发的供需推荐.In order to meet the technical service and R&D needs of enterprises,online technology supply and demand service platforms have been successively built in various places.The main reasons for the difficulty in matching online supply and demand are the accuracy of text similarity calculations and the impact of multiple data on transaction results.In order to solve the above problems,this paper proposes a model,which fuses multi-attribute supply and demand recommendations model.The model can make a supply and demand recommendation,according to the data from"Shaanxi Province SME R&D Service Platform".Note that,the data includes multi-attribute features such as papers,patents,achievements,and projects.Take advantage of the sentence vector representation method based on Bert(Bidirectional Encoder Representation from Transformers)to calculate the similarity score of supply and demand text,and the entropy method is combined to determine the weight of each attribute,and the data score of each attribute is weighted and transformed to achieve recommendation.Experiments show that our similarity calculation model outperforms the word vector representation methods on the real data set.The multi-attribute recommendation model combined with the weight matrix can better realize the supply and demand recommendation of enterprise technology research and development.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13