合作与欺骗信号共存下的CNN射频指纹识别方法  被引量:1

Convolutional Neural Network Radio Frequency fingerprint identification method for co-existence of cooperative signal and spoofing signal

在线阅读下载全文

作  者:张雅琪 杨春[1] 刘友江[1] 杨大龙[1] 秋勇涛 ZHANG Yaqi;YANG Chun;LIU Youjiang;YANG Dalong;QIU Yongtao(Institute of Electronic Engineering,China Academy of Engineering Physics,Mianyang Sichuan 621999,China)

机构地区:[1]中国工程物理研究院电子工程研究所,四川绵阳621999

出  处:《太赫兹科学与电子信息学报》2022年第12期1305-1310,共6页Journal of Terahertz Science and Electronic Information Technology

基  金:中国工程物理研究院院长基金资助项目(YZJJLX2017006)。

摘  要:射频指纹是设备硬件的固有特征,与发射信号本身无关,因此常用于通信抗欺骗中。本文基于射频指纹的原理,采用神经网络对接收机所获得的原始信号样本进行处理,包括I/Q序列、幅度/相位、星座图的二值图和星座图的颜色密度图4种信号表现形式,达到抗欺骗效果。在信干噪比为-30~30 dB的情况下,信号的识别准确率最高可达99.93%。相较于现有文献,本文所提的基于深度学习的方法可适应不同信干噪比的通信场景,在欺骗信号与合法信号同时存在的复杂通信环境下实现抗欺骗。The radio frequency fingerprints are inherent features of the device hardware,and will not change with the transmitted signal,therefore they are often used in communication anti-spoofing.In this paper,the neural network is adopted to process the original signal samples obtained by the receiver,including I/Q sequence,amplitude/phase,binary image of constellation diagram and color density diagram of constellation diagram to achieve anti-deception effect.When the signal-to-interference and noise ratio is in the range of-30 dB to 30 dB,the signal recognition accuracy can reach up to 99.93%.Being different from the existing literature,the method can be adapted to the scenes with different signalto-interference and noise ratios.This research shows that the proposed method is feasible to achieve anti-spoofing in a complex communication environment where spoofing signals and legal signals coexist.

关 键 词:抗欺骗 射频指纹 卷积神经网络 星座图 颜色密度图 

分 类 号:TN929.5[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象