检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:薛冰[1] 李宏庆 黄蓓佳[3] 王鹤鸣[4] 赵雪雁[5] 方恺[6] 陈成 陈伟强 石磊[9] 勾晓华[10] XUE Bing;LI Hong-qing;HUANG Bei-jia;WANG He-ming;ZHAO Xue-yan;FANG Kai;CHEN Cheng;CHEN Wei-qiang;SHI Lei;GOU Xiao-hua(Institute of Applied Ecology,Chinese Academy of Sciences,Shen-yang 110016,China;Chair of Circular Economy and Recycling Technology,Technical University of Berlin,Berlin 10623,Germany;School of Environment and Architecture,University of Shanghai for Science and Technology,Shanghai 200093,China;School of Materials and Metallurgy,Northeastern University,Shenyang 110819,China;College of Geography and Environment Science,Northwest Normal University,Lanzhou 730070,China;School of Public Affairs,Zhejiang University,Hangzhou 310058,China;Leibniz Centre for Agricultural Landscape Research,Müncheberg 15374,Brandenburg,Germany;Institute of Urban Environment,Chinese Academy of Sciences,Xiamen 361021,Fujian,China;School of Resources&Environment,Nanchang University,Nanchang 330031,China;College of Earth and Environmental Sciences,Lanzhou University,Lanzhou 730000,China)
机构地区:[1]中国科学院沈阳应用生态研究所,沈阳110016 [2]柏林工业大学循环经济与循环技术系,柏林10623 [3]上海理工大学环境与建筑学院,上海200093 [4]东北大学材料与冶金学院,沈阳110819 [5]西北师范大学地理与环境科学学院,兰州730070 [6]浙江大学公共管理学院,杭州310058 [7]莱布尼茨农业景观研究中心,勃兰登堡明谢贝格15374 [8]中国科学院城市环境研究所,福建厦门361021 [9]南昌大学资源与环境学院,南昌330031 [10]兰州大学资源环境学院,兰州730000
出 处:《应用生态学报》2022年第12期3169-3176,共8页Chinese Journal of Applied Ecology
基 金:国家自然科学基金项目(41971166);中国科学院区域发展青年学者项目(2021-003);辽宁省兴辽英才计划项目(XLYC2007201);中德农业科技合作项目(2018/2019)资助。
摘 要:社会-经济-自然系统是人类赖以生存和发展的复合系统,而数据驱动下的系统研究为加强生态系统的认知提供了新的增值导向。在新的数据语境下,社会-经济-自然复合系统呈现出一些新的特征,研究对象逐渐从单一要素向多要素耦合的方向转变,使支撑量化研究的数据体系更多样化、数据来源更广泛化、数据表达更具可视化,并呈现出研究尺度逐渐扩大化、研究对象更精细化的特征。在对数据的识别、表达和可视化的过程中,既要加强对时间、空间、结构、数量和秩序的耦合,也要注重与决策制定和地方服务的结合。新时期复合生态系统的未来研究方向应该从关键科学问题及支撑技术、尺度作用和多要素耦合以及地方和全球治理的科技支撑等方面展开,在数据的不断革新下,加强对多源数据、长期监测和时间序列的认知仍是需要深入研究的课题。开展复合生态系统的数据驱动分析,不仅能为生态系统的服务及可持续发展提供技术支撑,增强数据的长效共享机制,同时可为实现决策制定和信息传播等方面提供更多的价值支持。The social-economic-natural system is a complex system for human survival and development,and the data-driven system research provides a new value-added orientation to enhance the cognition of the ecosystem.Under the new data context,the social-economic-natural complex system shows new features.The research object is gradually changing from a single element to a multi-factor coupling direction,which makes the data system more diversified,data sources more extensive,data expression more visualized.The research scale shows the characteristics of gradually expanding,and the research object would be more detailed.In the process of data identification,expression and visualization,it is therefore necessary to strengthen the coupling of time,space,structure,quantity and order,as well as to focus on the integration with decision making and local services.The future research of complex ecosystems in the new era should be carried out in terms of key scientific issues and supporting technologies,the role of scale and multi-factor coupling,as well as scientific and technological support for local and global governance.Under the continuous innovation of data,strengthening the cognition of multi-source data,long-term monitoring and time series still needs to be studied in depth.Carrying out data-driven analysis of complex ecosystems not only provides technical support for ecosystem services and sustainable development and enhances the long-term data sharing mechanism,but also provides more value support for realizing decision making and information dissemination.
分 类 号:F49[经济管理—产业经济] F124[环境科学与工程—环境科学] X171.1
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117