基于马尔可夫模型的电动重载卡车市场需求预测方法  

Market Demand Forecasting Method of Electric Heavy DutyTruck Based on Markov Model

在线阅读下载全文

作  者:李洪宇 付凤平 张世科 LI Hongyu;FU Fengping;ZHANG Shike(State Grid Hebei Marketing ServiceCenter,Shijiazhuang 050035,China)

机构地区:[1]国网河北省电力有限公司营销服务中心,河北石家庄050035

出  处:《河北电力技术》2022年第5期25-29,共5页Hebei Electric Power

基  金:国网河北省电力有限公司科技项目(kj2020-085)。

摘  要:现有的卡车市场需求预测方法存在预测结果不稳定、预测精度较差的问题,为提高市场需求预测准确率,设计了一种基于马尔可夫模型的电动重载卡车市场需求预测方法。本文建立电动重载卡车市场需求灰色预测模型,通过标准差与后验差获得原始序列数据,得到后续序列的预测结果;基于马尔可夫模型修正误差参数,积累不同时段变量状态,在转移拓扑模型中获得隐藏状态相对矩阵;设计市场需求预测算法,实现基于马尔可夫模型的电动重载卡车市场需求预测。利用本文预测方法计算电动重载卡车在2018-2021年内的市场需求,并将计算结果与传统方法计算结果进行对比,证明设计方法的市场需求预测精度较高,稳定性较强,具有实际应用价值。The existing truck market demand forecasting methods have the problems of unstable forecasting results and poor forecasting accuracy.In order to improve the accuracy of market demand forecasting,a market demand forecasting method for electric heavy duty trucks based on the Markov model is proposed in this paper.The grey prediction model of market demand for electric heavy duty trucks is established.The original series data is obtained through standard deviation and posterior deviation,and the prediction results of subsequent series are obtained.Error parameters are modified based on the Markov model,variable states in different periods are accumulated,and a hidden state relative matrix is obtained in a transition topology model proposed prediction method.The market demand prediction algorithm is designed to realize the market demand prediction of electric heavy duty trucks based on the Markov model.The proposed prediction method is used to calculate the market demand of electric heavy duty trucks in 2018-2021,and the calculation results are compared with traditional methods.The comparison results show that the proposed method has high accuracy,strong stability and practical application value.

关 键 词:电动车 载重卡车 马尔可夫模型 市场需求 需求预测 

分 类 号:F272.1[经济管理—企业管理] U469.72[经济管理—国民经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象