基于SVM的变电站母线日净负荷曲线大数据识别方法  被引量:9

Big data recognition method for daily net load curve of substation bus based on SVM

在线阅读下载全文

作  者:青灿 行舟 智勇 刘文飞 郝如海 马瑞[1] QING Can;XING Zhou;ZHI Yong;LIU Wenfei;HAO Ruhai;MA Rui(School of Electrical&Informational Engineering,Changsha University of Science&Technology,Changsha 410114,China;State Grid Gansu Electric Power Company,Lanzhou 730030,China;Electric Power Science Research Institute,State Grid Gansu Electric PowerCompany,Lanzhou 730070,China)

机构地区:[1]长沙理工大学电气与信息工程学院,湖南长沙410114 [2]国网甘肃省电力公司,甘肃兰州730030 [3]国网甘肃省电力公司电力科学研究院,甘肃兰州730070

出  处:《电力科学与技术学报》2022年第6期125-131,共7页Journal of Electric Power Science And Technology

基  金:国家自然科学基金(51977012);国家电网公司科技项目(52272218000X)。

摘  要:针对传统基于统计的负荷曲线分类方法存在的准确性和低时效问题,将非侵入式负荷监测与分解技术拓展应用于变电站母线负荷曲线分解。考虑新能源出力,提出一种基于SVM和SCADA大数据的母线日净负荷曲线识别方法。首先,分析典型行业负荷有功功率曲线变化过程,提取有功突变时间进行负荷预筛选;然后,对有功功率波形进行傅里叶级数拟合,从而获取行业负荷特征标签,实现波形特征提取;其次,采用支持向量机将变电站母线日净负荷曲线波形特征分类识别,实现行业负荷特征辨识。最后对甘肃省电网某330 kV变电站实际数据进行SCADA仿真,结果表明,该方法可有效获取母线负荷类别,从而提升负荷建模效率。In view of the accuracy and low time efficiency of the traditional load curve classification method based on statistics,the non-invasive load monitoring and decomposition technology is extended and applied to the bus load curve decomposition of substation in this paper.A method for identifying the daily net load curve of the bus based on SVM and SCADA big data is proposed by considering the output of new energy.Firstly,the change process of the load active power curve of typical industries is analyzed,and the active power mutation time for load pre-screening is extracted.Secondly,Fourier series are utilized to fit the active power waveform.The industry load feature tags are obtained,waveform features are extracted.In addition,for the purpose of identification of the industry load characteristics,the support vectors machine is employed for the waveform characteristics classification and recognization for the daily net load curve of the substation bus.In the end,a 330 kV substation in Gansu Power Grid is simulated by SCADA for verification.It is shown that this method can effectively classify the bus load,thereby improving the efficiency of load modeling.

关 键 词:母线负荷识别 SCADA系统 傅里叶级数 支持向量机 

分 类 号:TM863[电气工程—高电压与绝缘技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象