检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张诚悦 全荣辉[1] 张海呈 ZHANG Chengyue;QUAN Ronghui;ZHANG Haicheng(School of Astronautics,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出 处:《中国空间科学技术》2022年第6期134-139,共6页Chinese Space Science and Technology
基 金:国家自然科学基金(51877111)。
摘 要:为了实现全面、实时的在轨卫星充放电风险分析,基于在相同环境下,不同材料表面充电的关联性,利用BP神经网络建立了一种由Kapton材料表面充电电位反演卫星其他常用介质材料表面电位的模型。以Kapton材料的表面电位以及材料厚度为输入,其他介质材料的表面电位作为模型输出,使用COMSOL建立的表面充电模型对神经网络进行训练,将反演误差降低到10%以下,并利用Kapton与Teflon材料表面充电地面试验数据验证反演模型的准确性,结果显示Teflon表面电位的反演值与实测值间的相对误差小于16%。To realize the comprehensive and real-time risk analysis of in-orbit satellites’charge-discharge,a BP neural network for the surface potential inversion of dielectrics commonly used on satellites with the Kapton surface potential was built based on the relation between surface charging of different materials in the same environment.The Kapton surface potential and the materials thickness were taken as the inputs,while the surface potential of other dielectric materials were taken as the model outputs.By using the surface charging model established by COMSOL to train the neural network,the inversion error was reduced to less than 10%.The accuracy of the inversion model was verified by the surface-charge-experiment data of Kapton and Teflon.The results show that the relative error between the inversion value and the experimental value is less than 16%.
分 类 号:P354.2[天文地球—空间物理学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.139.55.72