检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙超[1,2] 刘波 孙逢春[1,2] SUN Chao;LIU Bo;SUN Fengchun(National Engineering Research Center of Electric Vehicles,Beijing Institute of Technology,Beijing 100081,China;Shenzhen Automotive Research Institute,Beijing Institute of Technology,Shenzhen 518118,China)
机构地区:[1]北京理工大学电动车辆国家工程研究中心,北京100081 [2]北京理工大学深圳汽车研究院,深圳518118
出 处:《汽车安全与节能学报》2022年第4期593-616,共24页Journal of Automotive Safety and Energy
基 金:国家自然科学基金重点项目(U1964206)。
摘 要:通过车辆的运动规划与控制提升新能源汽车的节能效果,已经成为当前国内外聚焦的关键研究热点。该文总结了新能源汽车节能规划与控制技术的最新研究现状,分析了节能路径规划(eco-routing)、节能车速规划(eco-driving)、节能充电规划(eco-charging)、能量管理(energy management)和同时涉及以上多个领域的多任务优化技术。研究发现:虽然当前新能源汽车节能规划与控制技术已经取得了可观的研究进展,但在动态或随机交通行为场景下求解困难,综合考虑路径、速度和充电等深度关联行为的集成与协同优化仍需要探索,高价值的研究成果也有待从实验验证走向产业应用。今后新能源汽车节能规划与控制技术的未来发展趋势包括:1)考虑环境时变性和行为随机性的新问题;2)运用先进预测和高效求解等手段的新算法;3)系统解决多车多任务多维度问题的新方法;4)在真实场景下可复制推广的新应用。研究和解决以上问题对实现更高水平的新能源汽车节能控制具有重要意义。Improving the energy-saving effect of new energy vehicles through vehicle motion planning and control has become a key research focus at home and abroad. This paper summarizes the latest research status of energy-saving planning and control technology for new energy vehicles, and analyzes the eco-routing,eco-driving, eco-charging, energy management and multi-task optimization techniques involving multiple fields above. The study found that although the current energy-saving planning and control technology for new energy vehicles has made considerable research progress, it is difficult to solve the problem in dynamic or random traffic behavior scenarios, and the integrated and collaborative optimization, which considers deeply related behaviors such as path, speed and charging, remains to be explored, and the high-value research results also need to develop from experimental verification to industrial application. This paper proposes that the future development trends of energy-saving planning and control technology for new energy vehicles include: 1) new problems considering the time-varying environment and random behaviors;2) new algorithms using advanced prediction and efficient solutions;3) new methods to systematically solve multi-vehicle, multi-task and multidimensional problems;4) new applications that can be replicated and promoted in real scenarios. studying and solving the above problems is of great significance to achieve a higher level of energy-saving control of new energy vehicles.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.207.174