检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨文超[1] 屈鹏飞 刘晨 曹凯莉 秦嘉润 苏海军[1,2] 张军 任翠东[3] 刘林 Wen-chao YANG;Peng-fei QU;Chen LIU;Kai-li CAO;Jia-run QIN;Hai-jun SU;Jun ZHANG;Cui-dong REN;Lin LIU(State Key Laboratory of Solidification Processing,Northwestern Polytechnical University,Xi’an 710072,China;Development Institute of Northwestern Polytechnical University in Shenzhen,Northwestern Polytechnical University,Shenzhen 518057,China;Xi’an Aerospace Engine(Group)Co.,Ltd.,Xi’an 710021,China)
机构地区:[1]西北工业大学凝固技术国家重点实验室,西安710072 [2]西北工业大学深圳研究院,深圳518057 [3]西安航空发动机(集团)有限公司,西安710021
出 处:《Transactions of Nonferrous Metals Society of China》2023年第1期157-167,共11页中国有色金属学报(英文版)
基 金:funded by the National Science and Technology Major Project,China(Nos.2017VI-0002-0072,2019-VI-0020-0135);the National Natural Science Foundation of China(Nos.51771148,52071263);the Key Research and Development Program of Shaanxi Province,China(No.2020ZDLGY13-02);the Natural Science Basic Research Plan in Shaanxi Province,China(No.2021JC-13);the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China(No.2021-QZ-03);the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University,China(No.CX2021057);the Science,Technology,and Innovation Commission of Shenzhen Municipality,China(No.JCYJ20180306171121424)。
摘 要:在室温至1000℃的范围内,研究温度对一种低层错能镍基单晶高温合金压缩行为和变形组织的影响。研究结果表明,压缩行为和变形组织均表现出温度相关性。室温下该合金具有较高屈服强度,600℃时屈服强度有所下降;随后,随着温度的升高,屈服强度持续增加,并在800℃时达到最大值;在800℃以上时,屈服强度迅速降低。通过透射电子显微镜观察揭示合金变形机制。位错缠结和位错对塞积是室温下屈服强度较高的主要原因。在600℃时,变形机制从反相畴界切割向堆垛层错切割转变,这导致屈服强度略有下降。在800℃时,变形机制以堆垛层错切割为主,而Lomer-Cottrell锁和不同方向堆垛层错之间的反应导致最大的屈服强度。在900℃及以上时,虽然仍存在一些层错,但主要变形机制为位错绕过机制。最后,讨论变形机制和压缩行为的温度依赖性。The effect of temperature on the compressive behavior and deformation mechanism of a Ni-based single crystal superalloy with low stacking fault energy was investigated in the temperature range from room temperature to 1000℃.The results indicated that both the compressive behavior and deformation microstructure were temperaturedependent.There was a higher yield strength at room temperature and then the yield strength decreased at 600℃.After that,the yield strength would increase continuously to the maximum at 800℃and then decrease rapidly.Furthermore,the deformation mechanisms were revealed by transmission electron microscope observation.The dislocation tangle and dislocation pairs pile-up were the main reasons for the higher yield strength at room temperature.At 600℃,the transition in the deformation mechanisms from anti-phase boundary shearing to stacking fault shearing accounted for the slight decrease of the yield strength.At 800℃,the deformation mechanism was mainly controlled by stacking fault shearing and the reaction of stacking faults along different directions as well as Lomer-Cottrell locks was responsible for the maximum yield strength.Above 900℃,the primary deformation mechanism was the by-passing of dislocations,although there were still some stacking faults.Finally,the temperature dependence of deformation mechanism and compressive behavior was discussed.
分 类 号:TG132.3[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7