基于人工免疫的渐消容积粒子滤波目标跟踪算法  被引量:1

TARGET TRACKING ALGORITHM BASED ON ARTIFICIAL IMMUNE PARTICLE FILTER WITH FADING VOLUME

在线阅读下载全文

作  者:张铠翔 姜文刚[1] Zhang Kaixiang;Jiang Wengang(School of Electronic Information,Jiangsu University of Science and Technology,Zhenjiang 212000,Jiangsu,China)

机构地区:[1]江苏科技大学电子信息学院,江苏镇江212000

出  处:《计算机应用与软件》2022年第12期266-271,309,共7页Computer Applications and Software

基  金:国家自然科学基金项目(61671222)。

摘  要:针对基于传统粒子滤波的目标跟踪算法过程中由于重采样造成样本粒子的退化,使得估计精度下降和实时性较差的问题,提出一种基于人工免疫的渐消容积粒子滤波目标跟踪算法。该算法将容积粒子滤波与渐消滤波相融合产生自适应提议分布函数,同时根据粒子权重大小对样本粒子进行优化重组,对重组后的不稳定粒子进行人工免疫重采样。通过优化提议分布与重采样这两方面,使得目标跟踪系统具有更高的自适应性,并且保证粒子的多样化,有效地缓解粒子退化问题。仿真实验表明,该算法与基于传统的容积粒子滤波目标跟踪算法相比,跟踪精度大大提高,同时具有更高的实时性,降低了算法的复杂度。In order to solve the problem of the degradation of sample particles due to resampling in the process of target tracking algorithm based on traditional particle filtering, the reduced estimation accuracy, and the poor real-time performance, a target tracking algorithm based on artificial immunity particle filter with fading volume is proposed. An adaptive proposed distribution function was generated by the fusion of the volume particle filter and the fading filter, and the sample particles were optimized and recombined according to the particle weight. Artificial immune resampling was carried out for reconstituted unstable particles. By optimizing the proposed distribution and resampling, the target tracking system had higher adaptability and ensured the diversity of particles to effectively alleviate particle degradation. The simulation results show that the proposed algorithm can improve the tracking accuracy, improve the real-time performance and reduce the complexity of the algorithm.

关 键 词:目标跟踪 容积粒子滤波 粒子退化 渐消滤波 自适应部分人工免疫重采样 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象