基于泊松多伯努利混合滤波器的新生目标跟踪  

BIRTH TARGET TARCKING BASED ON POISSON MULTI-BERNOULLI MIXTURE FILTER

在线阅读下载全文

作  者:鑑美玉 柳晓鸣[1] Jian Meiyu;Liu Xiaoming(College of Information Science and Technology,Dalian Maritime University,Dalian 116026,Liaoning,China)

机构地区:[1]大连海事大学信息科学技术学院,辽宁大连116026

出  处:《计算机应用与软件》2022年第12期292-297,共6页Computer Applications and Software

基  金:福建海事局基金项目(2018Z0093)。

摘  要:针对概率假设密度滤波器对新生目标的跟踪需要假设新生目标先验已知,其先验假设不合理,提出一种基于泊松多伯努利混合滤波器的新生目标跟踪方法。该方法根据泊松多伯努利混合滤波器共轭先验性质,获得当前量测为泊松过程和多伯努利混合过程的线性组成,并且将量测分别建立成新生目标量测和存活目标量测。以广义最优模式分配函数作为算法检测标准,实验结果表明,该方法对新生目标数目和目标位置的估计准确性均有较大提高。Aimed at the problem of probability hypothesis density filter, which needs to assume that the new birth target is known a priori and its prior assumption is unreasonable, a new birth target tracking method based on Poisson multi-Bernoulli mixture filter is proposed. According to the conjugate prior property of Poisson multi-Bernoulli mixture filter, the method obtained the linear composition of the current measurement as Poisson process and multi-Bernoulli mixture process, and established the measurement as new birth target measurement and survival target measurement respectively. The generalized optimal subpattern assignment function was used as the algorithm detection standard. Experimental results show that the method greatly improves the estimation accuracy of the number of new birth targets and the target position.

关 键 词:多目标跟踪 随机有限集 泊松多伯努利混合 新生目标 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象