检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘翠玲[1,2] 闻世震 孙晓荣[1,2] 张善哲 姜传智 殷莺倩 LIU Cui-Ling;WEN Shi-Zhen;SUN Xiao-Rong;ZHANG Shan-Zhe;JIANG Chuan-Zhi;YIN Ying-Qian(School of Artificial Intelligence,Beijing Technology and Business University,Beijing 100048,China;Beijing Key Laboratory of Big Data Technology for Food Safety,Beijing Technology and Business University,Beijing 100048,China)
机构地区:[1]北京工商大学人工智能学院,北京100048 [2]北京工商大学食品安全大数据技术北京市重点实验室,北京100048
出 处:《食品安全质量检测学报》2022年第24期7981-7988,共8页Journal of Food Safety and Quality
基 金:北京市自然科学基金项目(4222043)。
摘 要:目的建立京郊鲜食杏白利糖度的定量分析预测模型,实现对京郊鲜食杏品质的快速无损检测。方法使用便携式近红外光谱仪采集900~1700 nm下鲜食杏的漫反射光谱信息,使用多元散射校正(multiplicative scatter correction,MSC)、标准正态变量变换(standard normal variable transformation,SNV)和Savitzky-Golay卷积平滑(Savitzky-Golay smooth,S-G)对原始光谱数据进行预处理,使用Kennard-Stone(K-S)算法以3:1比例将样本集划分成校正集和预测集,利用竞争自适应重加权采样(competitive adaptive reweighted sampling,CARS)算法和连续投影算法(successive projections algorithm,SPA)对光谱进行特征波长筛选,使用偏最小二乘回归(partial least squares regression,PLSR)算法建立京郊鲜食杏白利糖度的预测模型。结果以MSC+S-G+CARS+PLSR算法建立的北京鲜食杏的白利糖度预测模型取得较好的预测精度,模型的校正集均方根误差、校正集相关系数、预测集均方根误差、预测集相关系数分别为0.3502、0.9747、0.4698、0.9616。结论基于便携式近红外光谱技术所采集数据构建的京郊鲜食杏白利糖度预测模型准确性较高,可以快速准确检测鲜食杏白利糖度,从而实现对鲜食杏品质的快速无损检测,为鲜食杏的品质检测提供了理论依据和方法指导。Objective To establish a quantitative analysis and prediction model for the Brix content of fresh Armeniaca in the suburbs of Beijing,realize rapid non-destructive testing of the quality of fresh Armeniaca in the suburbs of Beijing.Methods Diffuse reflectance spectral information of fresh Armeniaca in the suburbs of Beijing was collected by a portable near-infrared spectrometer.The raw spectral data were preprocessed using multiplicative scatter correction(MSC),standard normal variable transformation(SNV),and Savitzky-Golay smooth(S-G).The sample set was divided into calibration set and prediction set according to the ratio of 3:1 using Kennard-Stone algorithm.The characteristic wavelengths of the spectrum were selected by the competitive adaptive reweighted sampling(CARS)algorithm and the successive projections algorithm(SPA).A prediction model of Beijing fresh Armeniaca Brix was established using the partial least squares regression(PLSR)algorithm.Results The prediction model for the Brix content of fresh Armeniaca in Beijing suburbs established by the MSC+S-G+CARS+PLSR algorithm had better prediction accuracy,and the root mean square of calibration,correlation coefficient of calibration,root mean square of prediction,and correlation coefficient of prediction of the model was respectively 0.3502,0.9747,0.4698,and 0.9616.Conclusion The prediction model of the Brix content of fresh Armeniaca in suburban Beijing constructed based on the data of the portable spectrometer has high accuracy,which can quickly and accurately detect the Brix content of fresh Armeniaca,and can realize rapid and non-destructive testing of the quality of fresh Armeniaca.The theoretical basis and method guidance are provided for the quality detection of fresh Armeniaca.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.136.226