检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邹斌[1,2] 张聪 ZOU Bin;ZHANG Cong(Hubei Key Laboratory of Advanced Technology for Automotive Components(Wuhan University of Technology),Wuhan Hubei 430070,China;Hubei Collaborative Innovation Center for Automotive Components Technology(Wuhan University of Technology),Wuhan Hubei 430070,China)
机构地区:[1]现代汽车零部件技术湖北省重点实验室(武汉理工大学),武汉430070 [2]汽车零部件技术湖北省协同创新中心(武汉理工大学),武汉430070
出 处:《计算机应用》2023年第1期61-66,共6页journal of Computer Applications
基 金:湖北省重点研发项目(2020BAB135);新能源汽车科学与关键技术学科创新引智基地项目(B17034)。
摘 要:为提高拥挤场景下的人群检测准确率,提出一种基于改进Faster R-CNN的密集人群检测算法。首先,在特征提取阶段添加空间与通道注意力机制,使用加强的双向特征金字塔网络(S-BiFPN)替代原网络中的多尺度特征金字塔(FPN),使网络对重要特征进行自主学习并加强对图像深层特征的提取;其次,引入多实例预测(MIP)算法对实例进行预测,以避免模型对拥挤场景下的目标造成漏检;最后,对模型中的非极大值抑制(NMS)进行优化,并额外增设一个交并比(IoU)阈值,以对检测结果的干扰项进行精确抑制。在开源的密集人群检测数据集上进行测试的结果显示,相较于原Faster R-CNN算法,所提算法的平均精度(AP)提升5.6%,Jaccard指数值提升3.2%。所提算法具有较高检测精度和稳定性,可以满足密集场景人群检测的需求。In order to improve the accuracy of crowd detection in crowded scenes, a dense crowd detection algorithm based on improved Faster Region-based Convolutional Neural Network(Faster R-CNN) was proposed. Firstly, the spatial and channel attention mechanisms were added to feature extraction stage and Strong-Bidirectional Feature Pyramid Network(S-BiFPN) was used to replace the multi-scale Feature Pyramid Network(FPN) in the original network, so that the network was able to autonomously learn important features and the extraction of deep image features was strengthened. Secondly, Multi-Instance Prediction(MIP) algorithm was introduced to predict instances, thus avoiding the model’s missed detection of targets in crowded scenes. Finally, Non-Maximum Suppression(NMS) in the model was optimized, and an additional Intersection over Union(IoU) threshold was added to accurately suppress the interference items of the detection results.Experimental results on the open source dense crowd detection dataset show that compared with the original Faster R-CNN algorithm, the proposed algorithm has the Average Precision(AP) increased by 5. 6%, and Jaccard index value increased by 3. 2%. The proposed algorithm has high detection precision and stability, which can meet the needs of crowd detection in dense scenes.
关 键 词:密集人群检测 Faster R-CNN 注意力机制 多实例预测 加强的双向特征金字塔网络
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.58.187.29