检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:廖发康 周亚丽[1] 张奇志[1] LIAO Fakang;ZHOU Yali;ZHANG Qizhi(School of Automation,Beijing Information Science and Technology University,Beijing 100192,China)
机构地区:[1]北京信息科技大学自动化学院,北京100192
出 处:《计算机应用》2023年第1期312-320,共9页journal of Computer Applications
基 金:国家自然科学基金资助项目(12172059)。
摘 要:针对传统双足机器人模型缺少脚质量和躯干的问题,提出考虑摆动腿动态及躯干影响的柔性双足机器人模型,并对其行走控制及稳定性进行研究。首先,建立系统的动力学模型并采用欧拉-拉格朗日法推导了系统的动力学方程;同时,在弹簧负载倒立摆(SLIP)模型的基础上添加刚性躯干、脚质量及采用变长度伸缩腿,充分考虑躯干及摆动腿动力学对机器人行走步态的影响;其次,设计基于变长度腿的反馈线性化控制器来跟踪目标轨迹,以及调节摆动腿和躯干的姿态;最后,利用Newton-Raphson迭代法和庞加莱映射分析机器人的不动点及轨道稳定性条件,并在理论分析的基础上进行仿真。仿真结果表明,所提控制器可以实现机器人的周期行走,对外界干扰具有良好的鲁棒性,且雅可比矩阵所有特征值的模均小于1,能形成稳定的极限环,证明系统是轨道稳定的。Aiming at the problem that the traditional biped robot model lacks the feet mass and the torso, a flexible biped robot model considering the influence of swing leg dynamics and torso was proposed, and its walking control and stability were studied. Firstly, the dynamics model of the system was established and the dynamics equation was deduced by the Euler-Lagrange method. At the same time, based on the Spring-Loaded Inverted Pendulum(SLIP) model, by adding rigid torso, foot mass, and adopting telescopic legs of variable length, the influence of the torso and the dynamics of swing legs on the gait of the robot was fully considered. Then, the feedback linearization controller based on variable length legs was designed to track the target trajectory and regulate the attitudes of the swing legs and the torso. Finally, the Newton-Raphson iteration method and Poincaré map were adopted to analyze the fixed point and orbital stability conditions of the robot.Simulation analysis was carried out based on theoretical analysis. Simulation results show that the proposed controller can realize the robot’s periodic walking and has good robustness to the external interference. And the moduli of all eigenvalues of the Jacobian matrix are less than 1, forming a stable limit cycle, which proves that the system has orbital stability.
关 键 词:双足机器人 躯干 摆动腿动力学 轨道稳定性 扰动抑制
分 类 号:TP242.6[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.161.247