基于深度学习的多模OFDM索引调制检测器  被引量:2

Deep Learning Based Detector for Multi-Mode OFDM Index Modulation

在线阅读下载全文

作  者:李扬 许魁 张冬梅 徐健卉 谢威 夏晓晨 李娜 LI Yang;XU Kui;ZHANG Dongmei;XU Jianhui;XIE Wei;XIA Xiaochen;LI Na(College of Communication Engineering,Army Engineering University of PLA,Nanjing,Jiangsu 210007,China)

机构地区:[1]陆军工程大学通信工程学院,江苏南京210007

出  处:《信号处理》2022年第12期2553-2562,共10页Journal of Signal Processing

基  金:国家自然科学基金(62071485,61901519,62001513);江苏省基础研究计划(BK20192002);江苏省自然科学基金(BK20201334,BK20200579)。

摘  要:本文提出了一种基于深度学习(Deep Learning, DL)的多模正交频分复用索引调制(Multi-Mode Orthogonal Frequency Division Multiplexing with Index Modulation, MM-OFDM-IM)检测器。在该检测器中包括两个子卷积神经网络(Sub-Convolutional Neural Network, SCNN)并行对MM-OFDM-IM信号的索引位和载波位进行检测,接收符号在经过迫零(Zero Force, ZF)均衡后再预处理生成二维矩阵,同时输入到子卷积网络中学习信号的内在特征。经过离线训练,该检测器可以实现MM-OFDM-IM符号的在线检测。仿真结果表明,该检测器在瑞利衰落信道条件下能以较低的计算复杂度获得近似最大似然(Maximum Likelihood, ML)检测性能。通过对已训练后的模型进行剪枝操作,能在保证检测误码率(Bit Error Rate, BER)的前提下大幅度减少模型的参数量,达到了性能与计算复杂度的有效平衡。In this paper, a Deep Learning(DL) based Multi-Mode Orthogonal Frequency Division Multiplexing with Index Modulation(MM-OFDM-IM) detector is proposed. In this detector, two Sub-Convolutional Neural Network(SCNN) detects the index and carrier bits of MM-OFDM-IM signal in parallel, and the received symbols are preprocessed after Zero Force(ZF) equalization to generate a two-dimensional matrix, which is fed to the SCNN in parallel to learn the signal′s intrinsic features. After offline training, the detector can achieve online detection of MM-OFDM-IM symbols. Simulation results show that the detector achieves approximate Maximum Likelihood(ML) detection performance with low computational complexity under Rayleigh fading channel conditions. By pruning the trained model, the number of parameters of the model can be significantly reduced while the Bit Error Rate(BER) is guaranteed, achieving an effective balance between performance and computational complexity.

关 键 词:正交频分复用 索引调制 神经网络 剪枝 最大似然检测 误码率 

分 类 号:TN929.5[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象