检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:何毓铭 徐雅洁 朱江 李述林[1] He Yuming;Xu Yajie;Zhu Jiang;Li Shulin(AVIC Nanjing Engineering Institute of Aircraft System,Nanjing 211100,China;Chinese Air Force Test Flight Bureau,Xi’an 710000,China)
机构地区:[1]航空工业南京机电液压工程研究中心,江苏南京211100 [2]中国空军试飞局,陕西西安710000
出 处:《航空科学技术》2022年第11期41-49,共9页Aeronautical Science & Technology
摘 要:基于应力驱动的两相局部/非局部积分模型,研究了航空压力传感器中的微尺度欧拉梁的的力学特性。通过将本构方程转换为Volterra积分方程,再利用拉普拉斯变换可得到积分—微分方程的一般解,最后通过边界条件和约束方程可以获取微尺度欧拉梁在不同边界条件下的弯曲解析解和弯曲数值解。对于屈曲和自由振动问题,通过求线性齐次方程组的非零解可以获得屈曲载荷和振动频率,无量纲化结果可以表明一致的强化效应,即不同边界条件下,随着非局部参数的增大,挠度减小,而屈曲载荷和振动频率增大。研究结果可以为微尺度压力传感器的结构设计和优化提供支持。Taking the sensitive element of the micro-scale aeronautical pressure sensor as the research object,a twophase local/nonlocal integral equation driven by the static bending,buckling and free vibration of the micro-scale Euler beam is established.The stress-strain relationship is the Fredholm integral equation,which can be transformed into Volterra integral equation,the general solution is obtained by solving the integral-differential equation through Laplace transform,in which the unknown constant is determined by the boundary conditions related to the constitutive relation and additional constraint equations,and finally the bending deflection of the Euler beam under different boundary conditions can be obtained.For bucking and free vibration and in order to obtain a unique solution,the analytical and numerical solutions of the buckling load and free vibration frequency are obtained by finding the no-zero solution of the linear homogeneous equations.They are dimensionless.The results obtained show consistency reinforcement effect.The research results provide support for the structural design and optimization of microscale pressure sensors.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49