检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陆至彬 李依梦 何畅 张冰剑 陈清林 潘明 LU Zhibin;LI Yimeng;HE Chang;ZHANG Bingjian;CHEN Qinglin;PAN Ming(School of Materials Science and Engineering,Sun Yat-sen University,Guangzhou 510006,Guangdong,China;Guangdong Engineering Center for Petrochemical Energy Conservation,Sun Yat-sen University,Guangzhou 510006,Guangdong,China;Industrial Data Science and Technology(Guangzhou)Co.Ltd.,Guangzhou 510530,Guangdong,China)
机构地区:[1]中山大学材料科学与工程学院,广东广州510006 [2]广东省石化过程节能工程技术研究中心,广东广州510006 [3]工数科技(广州)有限公司,广东广州510530
出 处:《化工学报》2022年第12期5483-5493,共11页CIESC Journal
基 金:国家自然科学基金面上项目(22078372,22078373);广东省自然科学基金面上项目(2022A1515010479)。
摘 要:物理信息神经网络(PINN)通过对偏微分方程组进行数学编码,实现了内嵌物理知识的深度学习,已成功地应用于流体力学和传热领域。但是,由于固体导热和流体传热间强耦合关联,通用的PINN难以有效求解上述领域内普遍存在的共轭传热问题。作为应用较为广泛的分区耦合策略,传热系数正向温度反向法可通过分别独立求解流体域和固体域来灵活处理界面处的复杂耦合关系。本工作基于真实物性体系,利用传热系数正向温度反向法构建分区耦合PINN建模策略。以共轭传热二维和三维模型为例,将分区耦合PINN预测的多物理场结果与常规的CFD软件模拟结果进行对比,结果显示二维模型和三维模型的固体温度最大绝对误差分别为0.19 K和2.12 K,表明了分区耦合PINN策略处理真实物性下共轭传热建模问题的有效性。Physics-informed neural network(PINN)realizes deep learning with embedded physical knowledge by mathematically encoding partial differential equations,and has been successfully applied in the fields of fluid mechanics and heat transfer.However,due to the strong coupling of heat transfer in fluids and heat conduction in solids,regular PINN methods are difficult to effectively solve the conjugate heat transfer problems that commonly exist in the aforesaid fields.As a widely-used partitioned coupling strategy,the heat transfer coefficient forward temperature backward(hFTB)can feasibly deal with complex coupling relation in the interface by solving the fluid and solid domains separately.In this work,based on real physical property systems,a modeling strategy that combines partitioned coupling and PINN is proposed by using hFTB approach.Taking 2-D and 3-D conjugate heat transfer models as examples,the results of multi-physics fields obtained by the proposed strategy are compared with those by using conventional CFD simulation.The resulting maximum absolute errors of the solid temperature of the 2-D and 3-D models are only 0.19 K and 2.12 K,respectively,which reflects the effectiveness of the proposed strategy in modeling conjugate heat transfer under the real physical property systems.
关 键 词:物理信息神经网络 偏微分方程 分区耦合 共轭传热 传热系数正向温度反向法
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.252.155