一种基于数字外围约束的多距离相位恢复方法  被引量:1

A multi-distance phase retrieval method based on digital peripheral constraints

在线阅读下载全文

作  者:吴云飞 李凡星[1] 严伟[1] WU Yunfei;LI Fanxing;YAN Wei(State Key Laboratory of Optical Technologies for Micro-fabrication,Institute of Optics and Electronics,Chinese Academy of Sciences,Chengdu,Sichuan 610209,China;University of Chinese Academy of Sciences,Beijing 100049,China;College of Engineering,Sichuan Normal University,Chengdu 610101,China)

机构地区:[1]中国科学院光电技术研究所微细加工光学技术国家重点实验室,成都610209 [2]中国科学院大学,北京100049 [3]四川师范大学工学院,成都610101

出  处:《激光杂志》2023年第1期74-79,共6页Laser Journal

基  金:中科院装备研制项目(No.YJKYYQ20210041);四川省重点项目(No.2021JDRC0084)。

摘  要:相位恢复问题是物理光学领域的一个经典问题。基于迭代算法的传统多距离相位恢复方法利用多幅离焦强度实现波前重建,具有重建精度高、光学系统紧凑、稳定性高的特点。这类算法中的振幅与相位重建算法(Amplitude-Phase Retrieval,APR)能实现高质量复振幅重建,具有良好抗噪性能,但受限于其缓慢的收敛速度和停滞问题,导致成像对比度低。提出在迭代过程中灵活获取样本数字外围,将支撑域约束与APR算法结合,以改进标准APR算法的收敛速度和收敛精度,数值仿真验证了该算法的有效性,具有可移植性和实际应用价值。Phase retrieval is a classic problem in the field of physical optics.The traditional multi-distance phase retrieval method based on iterative algorithm utilizes multiple defocused intensities to realize wavefront reconstruction.It bears the merits of high reconstruction accuracy,compact optical system and high stability.Among this type of algorithm,the Amplitude-Phase Retrieval(APR)algorithm can achieve a high-quality complex-amplitude reconstruction and is robust to noise.But it is limited by its slow convergence speed and stagnation issue,resulting in low imaging contrast.In this paper,we propose to obtain a digital periphery of the sample flexibly with iterations,and combine the support domain constraint with the APR algorithm to improve its convergence speed and precision.Numerical simulation verifies the effectiveness of the proposed algorithm,which shows portability and practical applications as well.

关 键 词:物理光学 相位恢复 支撑域 数字外围 

分 类 号:O436[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象