检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王兰 魏梦凌 单圣男 解玫莹 杨青山 程旺兴 WANG Lan;WEI Mengling;SHAN Shengnan;XIE Meiying;YANG Qingshan;CHENG Wangxing(School of Pharmacy,Anhui University of Chinese Medicine,Institute of Traditional Chinese Medicine Resources Protection and Development,Anhui Academy of Chinese Medicine,Hefei 230012,China)
机构地区:[1]安徽中医药大学药学院、安徽省中医药研究院中药资源保护与开发研究所,安徽合肥230012
出 处:《中医药学报》2023年第2期50-55,共6页Acta Chinese Medicine and Pharmacology
基 金:安徽省重点研究和开发计划项目(201904a07020073)。
摘 要:目的:建立红外指纹图谱结合化学计量学鉴别中药材墓头回及其伪品。方法:采集墓头回、白花败酱、黄花败酱和斑花败酱共50批药材的红外光谱,对光谱数据进行平滑、基线校正、纵坐标归一化、二阶求导等预处理,选取10个共有特征峰采用主成分分析(PCA)、正交偏最小二乘判别分析法(OPLS-DA)和簇类独立软模式识别法(SIMCA)分析光谱数据。结果:二阶导数红外光谱3500~2000 cm^(-1)波段中存在差异,墓头回及其伪品可以通过部分区域中吸收峰的峰形和峰强进行鉴别;PCA结果表现为B1~B11聚为一类,S1~S11聚为一类,M1~M15和H1~H13中有少数样品重叠;OPLS-DA将50批样品分为4类,分别为M1~M15,B1~B11,H1~H13,S1~S11,表明OPLS-DA能更好地将墓头回及其伪品区分开,且通过变量重要性投影(VIP)分析可得1、2、5、7号为区分贡献度最大的4个标志;SIMCA模式识别法建立的模型对样品的识别率为100%,说明该方法很好地将墓头回及其伪品分类。结论:红外光谱法结合二阶导数、PCA、OPLS-DA和SIMCA法为墓头回质量控制提供了理论基础与实验依据。Objective:To establish infrared fingerprint and stoichiometry to identify Raix Patriniae and its counterfeits.Methods:Infrared spectra of 50 batches of medicinal materials including Raix Patriniae,Patrinia villosa(Thunb.)Juss.,P.scabiosaefolia Fisch.ex Trev,and P.punctiflora Hsu et H.J.Wang were collected,and the spectral data were preprocessed with smoothing,baseline correction,ordinate normalization and second-order derivation,10 common characteristic peaks was analyzed by principal component analysis(PCA),and the spectral data were analyzed by orthogonal partial least squares discriminant analysis(OPLS-DA)and soft independent modeling of class analogy(SIMCA).Results:The experimental results showed that in the 3500-2000 cm^(-1) band of the second derivative infrared spectrum,there were differences in the fingerprint areas.The Raix Patriniae and its counterfeit could be identified by the peak shape and peak intensity of the absorption peak in some areas.The results of PCA showed that B1-B11 was clustered into one class;S1-S11 was clustered into one class,and a few samples in M1-M15 and H1-H13 overlapped.50 batches of samples were divided into four categories by OPLS-DA,namely M1-M15,B1-B11,H1-H13 and S1-S11,it showed that OPLS-DA could better distinguish Raix Patriniae and its counterfeits,and through the analysis of variable importance projection(VIP),it was found that 1,2,5 and 7 were the four markers with the largest contribution.The recognition rate of the model established by SIMCA pattern recognition method was 100%,which showed that the method could well classify Raix Patriniae and its counterfeits.Conclusion:Infrared spectroscopy combined with second derivative,PCI,OPLS-DA and SIMCA pattern recognition provide theory basis and experimental reference for the quality control of Raix Patriniae.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7