检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张虎成 杨镜宇[1] Zhang Hucheng;Yang Jingyu(National Defense University,Beijing 100091,China)
机构地区:[1]国防大学,北京100091
出 处:《系统仿真学报》2023年第1期221-227,共7页Journal of System Simulation
摘 要:为解决探索性仿真无法快速地遍历解空间,实时提供辅助决策方案的问题,提出了基于分类器的遗传算法,建立了基于该算法的作战体系仿真优化方法框架,能够根据体系关键因素和决策目标的动态变化寻找最优解,适用于诸如寻求最佳效费比方案、最优力量部署等多种体系优化问题。基于国防大学的仿真试验床系统进行了某海域火力拦阻作战的实验,通过GABC(genetic algorithm based on classifier)算法优化了力量配置问题。实验表明,该方法可以准确、快速地从复杂的体系限制条件中寻找效费比最高的方案,可以大量减少仿真实验的次数,满足快速辅助指挥员决策的需求。In order to solve the problem that exploratory simulation can not traverse the solution space quickly, and provide the auxiliary decision-making scheme in real time, a genetic algorithm based on classifier is proposed. The framework of simulation optimization method based on the algorithm is established. It can find the optimal solution according to the dynamic changes of key factors and decision targets of the system, which is suitable for such as seeking the best efficiency-cost ratio scheme and the optimization of the optimal power deployment and other systems. Based on the simulation bed system of the National Defense University, experiments on fire blocking operations in a sea area are carried out.The power allocation problem is optimized by GABC(genetic algorithm based on classifier). The experiment shows that the method can find the most efficient and cost ratio scheme from the complex system constraints accurately and quickly, and can reduce the number of simulation experiments and meet the needs of quick assistant commander decision.
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.140.248.104