检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张庭婷[1] 潘美琪 朱天怡 曹煜 张站权 刘单珂 贺兴[3] 于立军[2] ZHANG Tingting;PAN Meiqi;ZHU Tianyi;CAO Yu;ZHANG Zhanquan;LIU Shanke;HE Xing;YU Lijun(Research Institute of Carbon Neutrality,Shanghai Jiao Tong University,Shanghai 200230,China;College of Smart Energy,Shanghai Jiao Tong University,Shanghai 200240,China;School of Electronic Information and Electrical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)
机构地区:[1]上海交通大学碳中和发展研究院,上海200230 [2]上海交通大学智慧能源创新学院,上海200240 [3]上海交通大学电子信息与电气工程学院,上海200240
出 处:《科技和产业》2023年第2期263-271,共9页Science Technology and Industry
基 金:中国石油化工股份有限公司科技重大专项(P20071-4)。
摘 要:基于机器学习前沿理论,提出一种基于多模型融合Stacking集成学习方式的组合预测方法,以国内某特高含水油田区块中多口水驱产油井历年生产历史数据为试验样本,预测其动态产油量。依据不同算法的训练原理,选取极限梯度提升树算法、长短记忆网络(LSTM)、时域卷积网络(TCN)等作为模型的基学习器,采用多元线性回归作为模型的元学习器。结果表明:融合后的Stacking模型充分发挥了各基学习器的优势,相比单一模型,融合后的Stacking模型预测平均误差较小,预测鲁棒性较好。该模型的提出对融合模型在特高含水油藏开发方面具有重要的应用意义。An oil production prediction method based on multi-model combination under Stacking ensemble learning was proposed associated with the frontier theory of machine learning.The model was used to predict the dynamic oil production from the production data of a domestic ultra-high permeability oilfield in China developed by water flooding.Considering the differences in training principles of different algorithms,the XGBoost algorithm,long and short memory network(LSTM),temporal convolutional network(TCN)and other models are selected as base learners,the MLR algorithm is chosen as meta learner.The results show that the Stacking ensemble model has smaller average error and better prediction robustness compared with the traditional single model,since the ensemble model fully combined the advantages of each base learner.The proposed model is of great significance to the application in ultra-high water cut reservoirs.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222