检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄行蓉 马纪明[1,2] HUANG Xingrong;MA Jiming(Sino-French Engineer School,Beihang University,Beijing 100191,China;Hangzhou Innovation Institute(Yuhang),Beihang University,Hangzhou 310023,China)
机构地区:[1]北京航空航天大学中法工程师学院,北京100191 [2]北京航空航天大学杭州创新研究院(余杭),杭州310023
出 处:《力学与实践》2022年第6期1422-1429,共8页Mechanics in Engineering
基 金:国家自然科学基金(52105083,52175071);北京航空航天大学卓越工程师培养改革战略研究课题和先进航空动力创新工作站(HKCX2020-02-016)资助。
摘 要:旋量理论是为力学量身定制的数学工具,因其力学描述统一性,数学描述一般性和计算“求解过程”程式化,在对“多刚体”动力学问题“建模、分析和求解”时具有独特的优势:一方面借助螺旋量将刚体的平移和转动描述进行统一;另一方面从数学上进行严谨论述的同时引出对应的物理概念,使得数学性质和物理意义能得到相互映照。本文简要阐述了旋量理论目前在国内外力学教学中的研究现状;介绍了旋量的数学定义及其满足的数学运算性质;梳理了理论力学中的四种基本螺旋量,并给出了矢量静力学和动力学“基本定理”的旋量描述。希望通过本文的研究能为我国理论力学教学提供启示。Torseur theory is a mathematical tool specially designed for mechanics.Thanks to its unified mechanical description,mathematical generality and operational simplicity,it has significant advantages in modeling,analyzing and computing rigid multibody dynamics:on the one hand,unifying the translation and rotation process in the same mathematical notation;one the other hand,establishing correct physical concepts while making strict mathematical expositions,so that mathematical properties and physical meanings can be well reflected on each other.This paper briefly introduces the research status of spiral theory in mechanics teaching in China and abroad.The mathematical definition of torseur and its mathematical operation properties are presented.The four basic spirals commonly used in theoretical mechanics are expounded,and the spiral descriptions of“fundamental theorems”of vector statics and dynamics are formulated.It is expected that this study can provide new ideas for theoretical mechanics teaching in China.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44