基于PSO-SA的机器人关节空间轨迹规划  被引量:1

TRAJECTORY PLANNING OF ROBOT JOINT SPACE BASED ON PSO-SA

在线阅读下载全文

作  者:谢能斌 辛绍杰[1] Xie Nengbin;Xin Shaojie(College of Mechanical,Shanghai Dianji University,Shanghai 201306,China)

机构地区:[1]上海电机学院机械学院,上海201306

出  处:《计算机应用与软件》2023年第1期122-128,共7页Computer Applications and Software

基  金:上海市高原学科-机械工程资助项目(A1-5701-18-007-08)。

摘  要:针对工业机器人点到点轨迹规划问题,提出一种基于PSO-SA的时间最优机器人关节空间轨迹规划方法。使用模拟退火算法(SA)对粒子群算法(PSO)进行优化,将模拟退火机制引入到粒子群算法以提高算法的全局搜索能力。使用惯性权重非线性递减策略以及动态学习因子来平衡算法的全局与局部搜索能力。以PUMA_560机器人作为研究对象,通过5-7-5多项式插补函数得到各关节的轨迹曲线。通过PSO-SA优化关节运动时间,并加入关节的速度和加速度约束。对前三个关节进行实验仿真,结果表明PSO-SA比传统的PSO能得到更短的轨迹时间,算法也有更好的稳定性,提高了机器人的运动效率。Aiming at the problem of point-to-point trajectory planning for industrial robots, we propose a time-optimal trajectory planning of robot joint space based on PSO-SA. The simulated annealing(SA) algorithm was used to optimize the particle swarm optimization(PSO). We introduced SA into PSO-SA to improve the global search capability. We adopted inertial weight non-linear decreasing strategy and dynamic learning factor to balance the global and local search capabilities. Taking PUMA_560 robot as the research object, we obtained the trajectory curve of each joint through the 5-7-5 polynomial interpolation function. The joint motion time was optimized by PSO-SA, and the joint speed and acceleration constraints were added as constrained condition. The experimental simulation of the first three joints shows that PSO-SA can obtain a shorter trajectory time than the traditional PSO. This algorithm has better stability and improves the robot’s movement efficiency.

关 键 词:轨迹规划 时间最优 粒子群算法 模拟退火算法 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术] TP242.2

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象