检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王子璇 任明武[1] WANG Zixuan;REN Mingwu(School of Computer Science&Engineering,Nanjing University of Science&Technology,Nanjing 210094)
机构地区:[1]南京理工大学计算机科学与工程学院,南京210094
出 处:《计算机与数字工程》2022年第11期2497-2501,共5页Computer & Digital Engineering
摘 要:点云提供了精确的空间位置信息而被广泛应用于环境感知领域。近年来,越来越多的工作尝试直接以点云作为输入进行特征提取,Pointnet[10]和Pointnet++[11]是这个方向的开创者,但Pointnet++没有考虑点云非均匀采样的问题。研究提出了DST-Pointnet++对其进行改进,通过核密度估计和非线性变换从点云中提取出逆密度因子,将其与原点云特征进行加权,得到了具有密度信息的点云特征,提高了边缘点对局部特征的贡献,改善了因点云分布不均造成的问题。经过在公开数据集上测试对比,结果表明DST-Pointnet++具有更好的准确率和鲁棒性。Point cloud provides accurate spatial location information and it is widely used in environmental perception area.More and more work attempts to extract features directly from point clouds in recent years,Pointnet[10]and Pointnet++[11]are the pioneers in this direction,but Pointnet++does not consider non-uniform sampling.The research proposes DST-Pointnet++to improve it.The paper extractes the inverse density factor from point cloud through kernel density estimation and nonlinear transformation,then weightes it with the original point cloud feature to obtain a new feature with density information.DST-Pointnet++increases the contribution of edge points to local features and improves the problem caused by points cloud non-uniform distribution.After testing and comparison on public data sets,the results show that DST-Pointnet++has better accuracy and robustness.
关 键 词:点云分类 深度学习 Pointnet++ 逆密度
分 类 号:P413[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222