检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张衡[1] 王大勇[1] 宋朋[1] ZHANG Heng;WANG Da-yong;SONG Peng(Liaoning University,Shenyang Liaoning 110036,China)
机构地区:[1]辽宁大学,辽宁沈阳110036
出 处:《计算机仿真》2022年第12期373-377,共5页Computer Simulation
基 金:教育部高等教育司课题基金项目(202102079003);中国高等教育学会2020年度专项课题(2020SYD07)。
摘 要:大规模云服务器的资源类型较多,数据量巨大,因此云计算环境下服务器参数易发生异常问题,导致服务器产生故障。提出基于改进频繁模式增长(Frequent Pattern Growth, FP-Growth)算法的云服务器故障诊断方法。优先建立支持度函数完成服务器各项参数对应支持度的映射。采用关键字筛选方法将频繁项划分为关键项表和非关键项表两个部分。应用改进的FP-Growth算法,设定参数阈值规则,获取各个服务器故障向量变量的子集,以此为依据组建不同故障变量的条件频繁模式树(Frequent Pattern Tree, FP-tree),通过各个数据子集挖掘出的频繁项集求并集,得到包含全部故障诊断信息的频繁项集,最终完成云服务器故障诊断。经实验测试结果表明,所提方法能够在5ms内完成云服务器多类型故障诊断,且故障诊断精度为90%~100%。实验结果证明,上述方法具有可靠的应用性能。Large scale ECS has many types of resources and huge amounts of data. Therefore, server parameters in cloud computing environments are prone to abnormal problems, leading to server failures. In this paper, a method of fault diagnosis for cloud server based on improved FP-Growth(Frequent Pattern Growth) algorithm is proposed. At first, the support function was established to complete the mapping of the degree of support corresponding to the parameters of server. Second, frequent items were divided into two parts by keyword filtering method, namely the tables of key items and non-key items. On this basis, the improved FP growth algorithm was applied to setting parameter threshold rules, thus obtaining the subsets of fault vector variables of each server. Based on this, a conditional FP-Tree(Frequent Pattern Tree) of different fault variables was constructed. Moreover, the union was obtained by the frequent itemset mined from each data subset, so that the frequent itemsets containing all fault diagnosis information were obtained. Finally, the fault diagnosis was completed. Experimental results prove that the proposed method can complete the multi-type fault diagnosis of cloud server within 5ms, and the accuracy fault diagnosis is between 90% and 100%. Therefore, this method has reliable application performance.
关 键 词:改进频繁模式增长算法 云服务器 故障诊断 频繁项集
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49