检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:耿飙[1,2] 魏炜 梁成全 朱长元 GENG Biao;WEI Wei;LIANG Chenquan;ZHU Changyuan(Foundation Department,Suzhou Vocational Health College;College of Computer Science and Technology,China University of Mining and Technology;Information Section,Huadong Sanatorium;School of Computer Science,Hangzhou Dianzi University)
机构地区:[1]江苏省苏州市苏州卫生职业技术学院基础部 [2]江苏省徐州市中国矿业大学计算机科学与技术学院 [3]江苏省无锡市华东疗养院信息科 [4]浙江省杭州市杭州电子科技大学计算机学院
出 处:《中国医学计算机成像杂志》2023年第1期19-25,共7页Chinese Computed Medical Imaging
基 金:中国博士后科学基金(2021T140707);苏州卫生职业技术学院校级领雁培育重点项目(szWzy202004)。
摘 要:目的:自动检测肺炎以及区分2019冠状病毒病(COVID-19)和非COVID-19肺炎,旨在提高整体分类准确性.方法:数据集来自Kaggle存储库.使用编程环境MATLAB 2021a对所提出的模型进行开发和训练.该模型使用2913张胸部X线片图像(其中正常1005张,COVID-19900张,病毒性肺炎1 008张)进行训练,还使用从数据集中随机选择的一些未使用的胸部图像进行评估,并与现有深度学习方法相比较.结果:该模型在训练集上的平均准确率、召回率和精准率分别为0.989,0.983和0.984.此外,平均假阳性率和假阴性率分别为0.009和0.017.在验证集上,平均准确率、召回率和精准率分别为0.978、0.967和0.967.准确预测了未用于训练也未用于验证的图像60例(每类20例)中的58例.结论:利用卷积神经网络对胸部X线图像进行分类可以辅助放射科医师且能够减少他们之间可能由经验引起的图像解释的差异性.Purpose:To automatically detect pneumonia and distinguish coronavirus disease 2019(COVID-19)and non COVID-19 pneumonia in order to improve the accuracy of overall classification.Methods:The dataset was from the Kaggle repository.The proposed model was developed and trained using the programming environment Matlab 2021a.The model was trained with 2913 chest X-ray images,of which 1005 were normal,900 were COVID-19 and 1008 were viral pneumonia.Some unused chest images randomly selected from the dataset were also evaluated and compared with existing depth learning methods.Results:The average accuracy,recall and precision of the model on the training set were 0.989,0.983 and 0.984,respectively.In addition,the average false positive rate and false negative rate were 0.009 and 0.017,respectively.In the validation set,the average accuracy,recall and precision were 0.978,0.967 and 0.967,respectively.Fifty-eight of the 60 images(20 of each class)that were not used for training and validation were accurately predicted.Conclusions:Using convolution neural network to classify chest X-ray images can assist radiologists and reduce the differences in image interpretation that may be caused by experience.
关 键 词:卷积神经网络 深度学习 胸部X线片 肺炎 2019冠状病毒病
分 类 号:R445.3[医药卫生—影像医学与核医学] TP391[医药卫生—诊断学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28