检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:游双 张著洪 YOU Shuang;ZHANG Zhuhong(College of Big Data and Information Engineering,Guizhou University,Guiyang 550025,China;Guizhou Provincial Characteristic Key Laboratory of System Optimization and Scientific Computation,Guizhou University,Guiyang 550025,China)
机构地区:[1]贵州大学大数据与信息工程学院,贵阳550025 [2]贵州大学贵州省系统优化与科学计算特色重点实验室,贵阳550025
出 处:《智能计算机与应用》2023年第2期179-186,共8页Intelligent Computer and Applications
基 金:国家自然科学基金(62063002)。
摘 要:针对YOLOv3存在行人遮挡、漏检下检测精度低、漏检率高的问题,本文提出一种基于通道注意力及空间金字塔的改进型YOLOv3。将通道注意力机制嵌入残差网络中,强化关键信息的特征提取;利用能增大感受野的空间金字塔融合多尺度特征图,增强相互遮挡目标的特征提取能力;利用改进型非极大抑制模块消除冗余预测框,避免重叠目标漏检。比较性的数值实验表明,相较于YOLOv3,改进型YOLOv3的检测准确率及综合评估指标值分别提高了9.33%和5.01%,且行人检测的鲁棒性和泛化能力更强。Aiming at the problems of pedestrian occlusion,low detection accuracy and high misdetection rate in YOLOv3,an improved YOLOv3 is proposed based on channel attention and spatial pyramid.In the design of model,the channel attention mechanism is embedded into the residual network to strengthen the feature extraction of key information.The spatial pyramid that can enlarge the receptive field is used to fuse multi-scale feature maps in order to enhance the detection of mutually occluded targets.The non-maximum suppression model is improved and used to eliminate redundant prediction frames and avoid detection failures of overlapping targets.The comparative experiments have validated that compared with YOLOv3,the detection accuracy and comprehensive evaluation index value of the improved YOLOv3 are increased by 9.33%and 5.01%respectively,and meanwhile the robustness and generalization abilities of pedestrian detection are stronger.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63