检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈伟杰 郑成勇[1] 蔡圣杰 CHEN Wei-jie;ZHENG Cheng-yong;CAI Sheng-jie(School of Mathematics and Computer Science,Wuyi University,Jiangmen 529020,China)
机构地区:[1]五邑大学数学与计算科学学院,广东江门529020
出 处:《五邑大学学报(自然科学版)》2023年第1期30-37,共8页Journal of Wuyi University(Natural Science Edition)
摘 要:在高光谱图像(HSI)分类中,由于标记样本的获取十分耗时耗力,少样本问题一直是该领域的重要研究问题之一.本文先对HSI进行多种空间特征提取,并将这些特征与谱特征融合,以形成多种空-谱特征.然后对多种空-谱特征及其融合进行了实验对比分析.在3个基准HSI数据集上的实验结果表明,在少样本条件下,空-谱特征融合下的HSI分类精度显著高于仅用谱特征的分类精度;多空-谱特征融合方法的分类精度显著优于单一空-谱特征方法的分类精度.In hyperspectral image(HSI) classification, the problem of limited number of samples has always been one of the important research problems due to the time-consuming and labor-intensive acquisition of labeled samples. In this paper, a variety of spatial features were extracted from HSI, and these features were fused with spectral features to form a variety of space-spectral features. Then, these spatial-spectral features and their fusions were experimentally compared and analyzed. The experimental results on three benchmark HSI datasets show that with limited samples, the classification accuracy of spatial-spectral feature fusion is significantly higher than that of the method with only spectral features, and the classification accuracy of the multi-spatial-spectral feature fusion method is significantly better than that of the single spatial-spectral feature method.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3